

DATE:

AUGUST 2, 1991

TO:

JIM BARRON

FROM:

ROD MACLEOD

SUBJECT:

MONTHLY REPORT - JULY 1991

SUMMARY

During the month of July, the geology department:

- .. Continued to assist the environmental department with sampling of water trucks hauling process solution, and drilling monitor wells.
- .. Prepared for the start-up of exploration drilling.
- .. Updated bench level geology for the 5480 through 5380 benches.
- ... Completed a detailed reconciliation of actual ore tons mined versus tons predicted by the model for the first half of 1991.
- .. Worked with the engineering department on a new block model interpolation.

OXIDE EXPLORATION

Preparations for start-up of drilling were begun. A drilling crew from Douglas Exploration is scheduled to arrive Saturday, August 3. Initial drilling will be completed in the Southeast Langley target area. Limited drilling is also planned for the Hoodoo Extension and Ruby Ridge target areas.

MINE GEOLOGY

Bench level geology was updated and prepared for drafting for the 5480 through 5380 benches. The data will be and is being used to assist with prediction of ore/waste boundaries and oxidation contacts.

A detailed reconciliation of actual ore tons mined versus ore tons predicted by the block model was completed for the first half of 1991. This reconciliation was done independently of Vic Miller's, but each step was reviewed with Vic. Although individual numbers do not match perfectly, there is very close agreement on totals. The detailed reconciliation dealt with tons only because of the additional time that would have been required to calculate grade for each category. The reconciliation documents separately tons gained or lost in the Sunday and Dakota Maid pits as well as the reasons for the gains and losses (i.e., grade, topo, ore type, etc). A report summarizing the detailed reconciliation is being prepared.

Finally, the geology and engineering departments worked together on a new interpolation of block grades. The interpolation will now include the drilling completed in March and April. Particular care is being taken to check and update ore type data and check the model against past production.

rl

c: Victor Miller
Mike Golliher
Sandor Ringhoffer

W. Colle

DATE:

AUGUST 9, 1991

TO:

JIM BARRON

FROM:

VICTOR MILLER/MIKE GOLLIHER

SUBJECT:

MONTHLY REPORT - JULY, 1991

MINING

In July, active benches in the mine were the Phase I Sunday 5380, 5360, the Phase I Dakota Maid 5380 and the Phase II Sunday/Dakota Maid 5480. Total tons mined were 323,334 versus a budget of 365,000 tons, a difference of 41,666 tons. This was offset by the large amount of pad loading/unloading done this month (334,667 tons versus a budget of 240,000 tons - a difference of 94,667 tons).

Wet holes continue to be a problem even though we are supposedly past the rainy season. This month's charge was \$16,742 for wet holes. While this is down from last month, it is still considerably higher than the budgeted amount of \$6,000. Some of this can be expected as the Sunday Pit continues to get deeper but what is disturbing is that more than half of the holes in Phase II are wet. If this trend continues, it might be in our best interest to switch to an emulsion blasting agent which is water resistant.

Force account charges for the month totaled \$31,527. Other notable charges were \$4,646.50 for road building across the tailings and \$2,902.50 for topsoil salvage.

Stockpile volumes at the end of the month were as follows:

	TONS	GRADE
Ruby Stockpile	492.	0.043 opt
Crusher Stockpile	29,337.	0.037 opt
ROM Stockpile	35,500.	0.042 opt

The sulfide stockpile was surveyed this month. The calculated volume is 123,300 tons using 12.5 ft³/ton and a swell factor of 33%.

Topsoil removal continues in Ruby Gulch.

ENGINEERING

A new mine model, 91-A2, has been developed with all the latest drilling and oxide/mixed/sulfide interpretations. This new model is being used for scheduling for the remainder of 1991 and all of 1992. A comparison was done using models 90-4J and 91-A2 on the remaining oxide reserves. 91-A2 shows approximately 6% fewer ore tons than 90-4J.

A detailed reconciliation was done by Vic for the first half of 1991 using 90-4J model versus actual tons produced. This showed that 90-4J overestimated tons by 13.6%. The Geology Department did a similar comparison but slightly difference level and concluded a 15.6% tonnage loss for the 90-4J model. To be conservative for scheduling the remainder of 1991 and all of 1992, the ore tons predicted by 91-A2 were reduced by 10%. This should help in eliminating any big surprises.

A floating cone pit was run using \$370 gold, the 91-A2 model, and topo that showed Phase I mined out and Phase II down to the 5500 bench. Based on this deeper pit, some small changes were made to further optimize the remaining oxide pit.

A "Road C" haulroad was designed and submitted to Pat for a technical revision. A road out of the north end of the Dakota Maid Pit will greatly simplify meeting our ore/waste requirement for mining. This is a critical item for achieving further budgeted production.

rl

c: Rod MacLeod

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET JULY 1991

	MONTH				-	
DESCRIPTION	1991 Budget	Actual	Variance	1991 Budget	Actual	Variance
Ore Mined (tons):	150,000	124,252	<25,748>	780,000	666,910	<113,090>
Waste Mined (tons)	215,000	199,082	<15,918>	1,645,000	1,481,392	<163,608>
Total Mined (tons)	365,000	323,334	<41,666>	2,425,000	2,148,302	<276,698>
Grade Ore Mined (oz/ton Au)	0.037	0.042	0.005	0.042	0.046	0.004
Ore Crushed (tons)	150,000	106,726	<43,274>	780,000	704,460	<75,540>
Grade Ore Crushed (oz/ton Au)	0.034	0.039	0.005	0.038	0.040	0.002
Ore to Pads (tons)	120,000	89,736	<30,264>	740,000	750,777	10,777
Spent Ore From Pads (tons)	120,000	244,931	124,931	740,000	841,581	101,581
Metal Produced (oz):						
Au	2,087	791.99	<1,295.01>	20,260.0	16,733.31	<3,526.69>
Ag	3,240	535.35	<2,704.65>	16,848.0	22,573.02	5,725.02

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR JULY 1991

DESCRIPTION	ноитн т	O DATE	YEAR TO	DATE	PROJECT T	O DATE
	В.С.У.	TCNS	В.С.Ү.	TONS	B.C.Y.	TONS
SUNDAY PIT ORL	30617	61234	203852	407904	1376323	27527-6
SUNDAY PIT WASTE	50144	100288	459970	919940	2226187.5	4452375
TOTAL SUNDAY PIT	38761	161522	563922	1327844	3602570.5	7205141
DAKOTA PIT ORE	31609	63018	129503	259006	233845	477692
DAKOTA PIT WASTE	49397	98794	280726	561452	861351	1723732
TOTAL DAKOTA MAID	80906	161812	410229	320458	1100696	2201392
TOTAL ORE MINED	62126	124252	333455	665910	1615228	3230455
TOTAL WASTE MINED	99541	199082	740696	1481392	3088038.5	6176077
TOTAL MINED	161667	323334	1704151	2148302	4703266.5	9406533
GRADE ORE MINED		AU		AU		AU
SUNDAY PIT ORE		0.348		Ø.Ø47		0.04:
DAKCTA PIT ORE		e.036		0.045		0.042
TOTAL ORE MINED		3.041		Ø.046		0.04-

ASSUME: 2 TONS/BCY

ASSUME: 26.0 BCY/TRUCK

AVERAGE DAILY CRUSHER HEAD NACN SHAKE VS FIRE

	TONS	1 A.A.	A.A.	Fire	Fire	
Date	!	Au opt	ounces	Au opt	ounces	
7 (01 (0)	1 4805 0		106 200		210 015	
7/01/91	4905.0	0.038		•	210.915	
7/02/91	6251.0	•		0.035		
7/03/91	8656.6	0.039	337.607	0.046	398.204	
7/08/91	5651.2	0.030	169.536	0.035	197.792	
7/09/91	9819.1	0.040	392.764	0.049	481.136	
7/10/91	9060.2	1 0.028	253.6 86	0.034	308.047	
7/11/91	7980.4	9.029	231.432	0.042	335.177	
7/15/91	1 4179.0	0.048	200.592	0.059	246.561	
7/16/91	1330.2	0.022	29.264	0.025	33.255	
7/18/91	1 4825.0	0.022	106.150	0.026	125.450	
7/22/91	4659.1	0.025	116.478	0.030	139.773	
7/23/91	4404.0	0.032	140.928	0.036	158.544	
7/24/91	5667.8	! 0.032	181.370	0.037	209.709	
7/25/91	7408.1	0.040	296.324	0.947	348.181	
7/29/91	7389.1	0.022	162.560	0.027	199.506	
7/30/91	1 10906.1	0.032	348.995	0.038	414.432	
7/31/91	3633.6	0.025	90.840	0.033	119.909	
		1		1		.
TOTAL	106725.5	9.032	3457.450	0.039	4145.376	

DATE:

SEPTEMBER 10, 1991

TO:

JIM BARRON

FROM:

VICTOR MILLER/MIKE GOLLIHER

SUBJECT:

MONTHLY REPORT - AUGUST, 1991

MINING

August production nearly matched the revised mining schedule developed early this month. Waste mining was 30,642 below budget partially because of limited drilling capacity and partially because of unclear production goals early in the month. The shortage in drilling capacity will be resolved early in September when the second drill will be returned. At that time, Blattner will schedule both drills to run on day shift and one to drill on night shift. This schedule does not require Blattner to hire another driller.

Active benches in the mine included the Dakota Maid Phase I 5380 bench, the Sunday Phase I 5360 bench and the Phase II 5480 bench which was completed. Total production for the month was 111,782 tons of ore at 0.043 opt, 229,358 tons of waste, 146,221 tons off loaded from the leach pad, and 137,316 tons loaded on the leach pad. Because the loading of Cell 4 overlapped into September, Blattner does not get credit for it until the end of September.

Stockpile volumes at the end of the month were as follows:

	TONS	GRADE
Ruby Stockpile	492	0.043 opt
Crusher Stockpile	51,465	0.040 opt
ROM Stockpile	45,900	0.042 opt

Total Force Account charges were \$32,294. Most notable were \$1,786 for pushing old tailings out of the way, \$3,129 for leach pad work (dike raising, crane and ramp work), and \$20,482 in wet hole charges. Wet holes are most prevalent in the Sunday pit both in Phase I and Phase II.

Topsoil salvaging in Ruby Gulch should be completed in early September and Myron sealed two monitor wells there that were about to be overrun.

ENGINEERING

The greater portion of the month was spent refining production schedules and budgets both for the remainder of 1991 and for 1992. Once these were completed, all figures were put in a Lotus file for everyone's review. Upon agreement of the remainder of 1991 schedule, Blattner was informed, thus expediting the return of the second drill.

Other projects included:

Rehabilitated the Yellow Creek and Grizzly Gulch roads after the solution transfer was completed.

Completed compacted fills around the leach pad to accommodate the new solution balance which required a lift of approximately 1 to 1 1/2 feet.

Started working on sediment control structures in preparation for winter.

Assistance was given to Accounting on the revised 1991 and 1992 budget.

rl

c: Rod MacLeod

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET AUGUST 1991

		-MONTH		YE	AR TO DATE	-
DESCRIPTION	1991 Budget*	Actual	Variance	1991 Budget*	Actual	Variance
Ore Mined (tons)	100,000	111,782	11,782	880,000	778,692	<101,308>
Waste Mined (tons)	260,000	229,358	<30,642>	1,905,000	1,710,750	<194,250>
Total Mined (tons)	360,000	341,140	<18,860>	2,785,000	2,489,442	<295,558>
Grade Ore Mined (oz/ton Au)	0.040	0.043	0.003	0.042	0.046	0.004
Ore Crushed (tons)	100,000	101,382	1,382	880,000	805,842	<74,158>
Grade Ore Crushed (oz/ton Au)	0.037	0.037	0	0.038	0.040	0.002
Ore to Pads (tons)	114,000	79,254	<34,746>	854,000	830,031	<23,969>
Spent Ore From Pads (tons)	152,000	146,221	<5,779>	892,000	987,802	95,802
Metal Produced (oz):						
Au	2,900	3,133.18	233.18	23,160.0	20,186.58	<2,973.42>
Ag	3,480	1,860.97	<1,619,03>	20,328.0	26,864.62	6,536.62

^{*} Revised schedule for the remainder of 1991

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR AUGUST 1991

DESCRIPTION	MONTH T	O DATE	YEAR TO	DATE	PROJECT TO	O DATE
	B.C.Y.	TONS	B.C.Y.	TONS	В.С.Ү.	TONS
SUNDAY PIT ORE	31391	62782	235343	470686	1407774	2815543
SUNDAY PIT WASTE	43306	86612	503276	1006552	2269493.5	4538987
TOTAL SUNDAY PIT	74697	149394	738619	1477238	3677267.5	7354535
DAKOTA PIT ORE	24500	49000	154003	308006	263345	526690
DAKOTA PIT WASTE	71373	142746	352099	704198	933224	1866445
TOTAL DAKOTA MAID	95873	191746	506102	1012204	1196569	239 3138
TOTAL ORE MINED	55891	111782	389346	778692	1671119	3342239
TOTAL WASTE MINED	114679	229358	855375	1710750	3202717.5	6405435
TOTAL MINED	170570	341140	1244721	2489442	4873836.5	9747673
GRADE ORE MINED		AU		AU		AU
SUNDAY PIT ORE		0.051		0.047		0.043
DAKOTA PIT ORE		0.034		0.044		0.046
TOTAL ORE MINED		0.043		0.046		0.043

ASSUME: 2 TONS/BCY

ASSUME: 26.0 BCY/TRUCK

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

	TONS	A.A.	A . A .	Fire	Fire		
Date	1	Au opt	ounces	Au opt	ounces		
				 -			
08/08/91	9006.0	0.024	216.144	0.027	243.162	HEAP 4	8 - 3
08/09/91	10240.0	0.024	245.760		276.480		
08/12/91	9386.0	0.030	281.580	0.036	337.896		
08/13/91	7224.0	0.028	202.272	0.035	252.840		
08/14/91	5385.0	0.026	140.010	0.036	193.860		
08/15/91	2079.0	0.037	76.923	0.044	91.476		
08/19/91	2748.1	0.025	68.703	0.030	82.443	HEAP 45	9 - 4
08/20/91	1 5749.0	0.028	160.972	0.039	224.211		
08/21/91	4363.0	0.023	100.349	0.030	130.890		
08/22/91	1 5739.8	0.031	177.934	0.047	269.771		
08/23/91	1 5966.2	0.032	190.918	0.050	298.310		
08/26/91	5461.0	0.035	191.135	0.045	245.745		
08/27/91	6555.0	0.027	176.985	0.036	235.980		
08/28/91	8367.1	0.024	200.810	0.034	284.481		
08/29/91	7373.1	0.039	287.551	0.046	339.163		
08/30/91	1 5739.6	0.032	133.667	0.036	206.626		
	1	l				- <i></i>	-
TOTAL	1101381.9	0.029	2901.713	0.037	3713.334		

DATE:

OCTOBER 2, 1991

TO:

JIM BARRON

FROM:

ROD MACLEOD

SUBJECT:

MONTHLY REPORT - SEPTEMBER 1991

SUMMARY

During the month of September, the geology department:

- .. Completed an additional 2,760 feet of drilling in 13 holes;
- .. Completed 8,300 line feet of soil grid in the West Anchor Target area;
- .. Began supplying exploration drill data to Dwain Nell for entry into the computer;
- .. Prepared an exploration schedule and cost estimate which already requires revision;
- .. Hired Robin Symons as a temporary laborer (shared with the assay lab);
- .. Filed Affidavits of Labor for annual assessment work with Lawrence County and the Bureau of Land Management;
- .. Spent one day rock chip sampling on the Hidden Treasure Claim block northwest of Lead; and,
- .. Kept up with necessary pit responsibilities.

OXIDE EXPLORATION

An additional 2,760 feet of drilling was completed in 13 holes this month. Eleven holes (1,605 feet) were drilled in the Southeast Langley area and three holes (1,155 feet) were drilled to confirm mineralization widths at Anchor Hill. Assays received to date are attached.

8,300 line feet of soil grid was laid out and sampled in the West Anchor target area. An additional 10,000 to 15,000 line feet is in progress.

Exploration drill hole data is being prepared for a <u>preliminary</u> interpolation of block grades in the Southeast Langley area. The exploration schedule prepared this month is already in need of revision as assay results have taken longer to receive than anticipated and due to other tasks which have taken time away from exploration.

Robin Symons was hired as a temporary laborer to assist with drilling. She is working half time for exploration and half time for the assay lab.

LAND

Annual Affidavits of Labor for assessment work were filed for 323 unpatented claims this month.

One day was spent working and sampling the Hidden Treasure claim block northwest of Lead. An additional one or two days is planned for this fall if time permits.

PIT GEOLOGY

As exploration activities increase, less time has been devoted to the pit. We are however still working with Bob on grade control and watching for areas that will require scheduling for final wall mapping.

rl

c: Victor Miller
Mike Golliher
Sandor Ringhoffer

*1991 Assays (≥ .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH	AREA	ASSAY SUM	MARY
R91-757	200 feet	Southeast Langley	0 - 35	35' @ .034 oxide 35' @ .034 W.A.G.
R91-758	320 feet	Southeast Langley	225 - 230	5' @ .025 sulphide 5' @ .025 W.A.G.
R91-759	150 feet	Southeast Langley	0 - 10 65 - 70	10' @ .032 oxide <u>5' @ .044</u> oxide 15' @ .036 W.A.G.
R91-760	200 feet	Southeast Langley		No Significant Assays
R91-761	140 feet	Hoodoo Extension		No Significant Assays
R91-762	170 feet	Hoodoo Extension		No Significant Assays
R91-763	175 feet	Hoodoo Extension		No Significant Assays
R91-764	140 feet	Hoodoo Extension		No Significant Assays
R91-765	100 feet	Hoodoo Extension		No Significant Assays
R91-766	95 feet	Hoodoo Extension	50 - 80	30' @ .021 oxide 30' @ .021 W.A.G.
R91-767	120 feet	Hoodoo Extension		No Significant Assays
R91-768	175 feet	Hoodoo Extension	95 - 100	5' @ .030 oxide 5' @ .030 W.A.G.
R91-769	110 feet	Golden Crest		No Significant Assays
R91-770	170 feet	Southeast Langley	25 - 75	AA <u>Fire</u> 50' @ .059 .071 oxide 50' @ .059 W.A.G.
R91-771	175 feet	Southeast Langley	0 - 15 85 - 90 110 - 120	AA Fire 15' @ .030 .030 oxide 5' @ .076 .079 oxide 10' @ .014 .024 oxide 30' @ .032 W.A.G.

All AA assays are cyanide extractable Au

*1991 Assays (≥ .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH	AREA	ASSAY SUMI	MARY
R91-772	230 feet	Southeast Langley	10 - 15 25 - 50	AA Fire 5' @ .023 .023 oxide 25' @ .020 .021 oxide 30' @ .020 .021 W.A.G.
R91-773	230 feet	Southeast Langley	60 - 65 90 - 135 185 - 200	5' @ .018 .034 oxide 45' @ .047 .099 oxide 15' @ .030 .046 oxide 60' @ .039 .086 W.A.G.
R91-774	220 feet	Southeast Langley	90 - 100 125 - 130 170 - 175	10' @ .020 .046 mixed 5' @ .019 .029 mixed 5' @ .016 .050 oxide 20' @ .019 .043 W.A.G.
R91-775	230 feet	Southeast Langley	80 - 85 95 - 100 120 - 125 165 - 180	5' @ .022 .020 oxide 5' @ .023 .022 oxide 5' @ .020 .019 oxide 15' @ .020 .028 oxide 30' @ .021 .024 W.A.G.
R91-776	250 feet	Southeast Langley	5 - 10 35 - 65 80 - 95	5' @ .024 .022 oxide 30' @ .036 .042 oxide 15' @ .040 .038 oxide 50' @ .036 .039 W.A.G.

All AA assays are cyanide extractable Au

*1991 Assays (≥ .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH	AREA	ASSAY SUMMARY	
R91-777	100 feet	Southeast Langley		AA Fire No Significant Assays
R91-778	160 feet	Southeast Langley	140 - 145 <u>5' @</u>	.014 .025 sulphide .031 Pending oxide .022 Pending W.A.G.
R91-779	140 feet	Southeast Langley	50 - 75 25'@ 100 - 120 20'@	0.032 .020 oxide 0.020 .021 oxide/mix 0.019 .020 oxide 0.024 .020 W.A.G.
R91-780	150 feet	Southeast Langley	40 - 45 5'@	N/A .081 oxide N/A .044 mixed N/A .080 mixed .068 W.A.G.
R91-781	250 feet	Southeast Langley	70 - 75 5' @ 130 - 145 15' @	N/A .021 oxide N/A .020 oxide N/A .021 oxide N/A .030 mixed .022 W.A.G.
R91-782	150 feet	Southeast Langley	80 - 105 25' @	N/A .046 oxide N/A .070 mixed N/A .032 sulphide .061 W.A.G
R91-783	200 feet	Southeast Langley	35 - 50	.051 .053 oxide .026 .028 oxide .066 .058 oxide .051 .058 oxide .021 .021 oxide .052 .054 W.A.G.
R91-784	150 feet	Southeast Langley		N/A .025 oxide N/A .022 oxide .025 W.A.G.

All AA assays are cyanide extractable Au

*1991 Assays (≥ .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH	AREA	ASSAY SU	MMARY			
R91-785	170 feet	Southeast Langley	0 - 25 40 - 55	25'@ N/A 15'@ N/A 40'@	.032 oxide .029 oxide .031 W.A.G.		
R91-786	135 feet	Southeast Langley	0 - 25 55 - 100	25' @ N/A 45' @ N/A 70' @			
R91-787	385 feet	Anchor Hill		Pending	Pending		
R91-788	400 feet	Anchor Hill		Pending	Pending		
R91-789	370 feet	Anchor Hill		Pending	Pending		
* All AA assays are cyanide extractable Au W.A.G. = weighted average grade							

Note: Some results are being checked for R91-777, 778, 779, 782, 783, 784, 785, 786.

DATE:

OCTOBER 4, 1991

TO:

JIM BARRON

FROM:

VICTOR MILLER/MIKE GOLLIHER

SUBJECT:

MONTHLY REPORT - SEPTEMBER, 1991

Mining

A total of 688,902 tons was moved this month versus a budget of 726,000 tons. Waste mining and pad unloading were the two areas where we did not meet budgeted tons. However, when the budget was created it was assumed that the west half of Cell 7, which was loaded three weeks later than the east half, would be offloaded. Since drilling confirmed that significant amounts of leachable gold remained in the west half of Cell 7, it was not unloaded. The net effect on the budget of this is as follows:

Unloaded tons - 30,000 @ \$.46/T Loaded tons - 30,000 @ .47/T Mined Ore tons - 30,000 @ \$1.07/T Mined Waste tons - 60,000 @ \$1.07/T

Net -150,000

During the month of December 1991 through February 1992, the pads will be neutralized faster than the crusher can supply ore (due to the cold weather). For this reason, some of the above savings in mined ore and waste will be utilized to build the crusher stockpile. This will occur next month during the transition delay between Cell 7 and 1.

During the last week of the month, the north pit haul road was constructed over the existing access Road C. The double entry in the Phase 2 push back was critical for the mine to reach the budgeted production.

During the first two weeks of the month, the shortage of blasted rock limited Blattner to working just five days a week. On September 17, the second drill arrived which will increase the drilling capacity from two 10-hour shifts a day to three 10-hours shifts per day. Although the full benefit of the extra drill capacity will not be realized until next month, the total tonnage moved by the mine did increase by 15% from the first two weeks to the last full two weeks of the month.

During the month, Cells 6 and 7 were completely loaded and ready for leaching. The topsoil below the waste dump was removed and stockpiled in preparation for next year's mining. Work was also done on some of our sediment control structures in anticipation of next spring's runoff.

Stockpile volumes at the end of the month were as follows:

	TONS	GRADE
Ruby Stockpile	492	0.043 opt
Crusher Stockpile	7,209	0.035 opt
ROM Stockpile	18,000	0.041 opt

Engineering

A detailed accounting for the differences between the January 1, 1991 reserves of 2,612 Ktons and the new August 1, 1991 scheduled reserves of 1,533 Ktons was made. A detailed report on this is being prepared. Below are the major causes for the changes:

Ore reserves mined 01/01 to 08/01	-750 Ktons
Changes in the block model	-200 Ktons
10% model to schedule tonnage reduction	-153 Ktons
Miscellaneous other changes (net)	+ 24 Ktons

It was found that the tonnage reduction derived from the 1990 model versus actual reconciliation was not adequate to predict the tonnage mined during the first half of 1991. Based on this and the changes from the January 1, 1991 model and the new August 1, 1991 model, the budgeted scheduled ore tonnage was reduced by 10% from what the model predicted.

rl

c: Rod MacLeod

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET SEPTEMBER 1991

		MONTH		YEAR TO DATE			
DESCRIPTION	1991 Budget*	Actual	Variance	1991 Budget*	Actual	Variance	
Ore Mined (tons)	165,000	167,100	2,100	1,045,000	945,792	(99,208)	
Waste Mined (tons)	325,000	265,212	(59,788)	2,230,000	1,975,962	(254,038)	
Total Mined (tons)	490,000	432,312	(57,688)	3,275,000	2,921,754	(353,246)	
Grade Ore Mined (oz/ton Au)	0.036	0.041	0.005	0.041	0.045	0.004	
Ore Crushed (tons)	165,000	176,396	11,396	1,045,000	982,238	(62,762)	
Grade Ore Crushed (oz/ton Au)	0.033	0.035	0.002	0.037	0.039	0.002	
Ore to Pads (tons)	152,000	227,249	75,249	1,006,000	1,057,280	51,280	
Spent Ore From Pads (tons)	84,000	29,341	(54,659)	976,000	1,017,143	41,143	
Metal Produced (oz):							
Au	2,765	2,534.62	(230.38)	25,925.0	22,721.20	(3,203.80)	
Ag	3,318	1,629.44	(1,688.56)	23,646.0	28,494.06	4,848.06	

^{*} Revised schedule for the remainder of 1991

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

Date	TONS	•	A.A. ounces	•		
09/04/91 09/05/91 09/06/91 09/09/91 09/10/91 09/11/91 09/12/91 09/13/91 09/16/91 09/17/91	11145.0 7255.2 8781.6 11105.9 12413.0 12335.7 7335.6 8544.0 5578.5 8400.4 7552.2 8900.4 9874.1	0.029 0.028 0.035 0.032 0.033 0.021 0.031 0.023 0.031 0.032	210.401 245.885 388.707 397.216 407.078 154.048 264.864 128.306 260.412 241.670 284.813	0.034 0.036 0.041	224.911 289.793 444.236 484.107 592.114 183.390 273.408 156.198 285.614 271.879 364.916	
09/20/91 09/23/91 09/24/91 09/25/91 09/26/91 09/27/91 09/30/91	13069.4 8448.1 8369.1 4159.4 7954.2 9717.4 5456.9 	0.029 0.024 0.025 0.020 0.025 0.027 0.029	379.013 202.754 209.228 83.188 198.855 262.370 158.250	0.039 0.028 0.029 0.024 0.026 0.033 0.035	509.707 236.547 242.704 99.826 206.809 320.674 190.992	

RECONCILIATION SECOND 1/2 OF 1991 WITH 91-A2 MODEL

ACTUAL PRODUCTION BASED ON DIG PLANS FROM BLAST HOLE ASSAYS

10/4/91

MONTH		MINED ORE TONS	@ .020 GRADE	CUTOFF	1	WASTE TONS		TOTAL TONS	STRIP RATIO
	 I				====		= = = 		======
JULY		124,252	0.042	5,219		199,082		323,334	1.6
AUG		111,782	0.037	4,136		229,358	ļ	341,140	2.1
SEPT	 	167,100	0.041	6,851		265,212	1	432,312	1.6
TOTAL		403,134	0.0402	16,206		693,652	= = = 	1,096,786	1.72

MODEL (91-A2) ESTIMATION USING SAME VOLUME AS ACTUAL

10/4/91

МОМТН	;	MODEL ORE	@.@22 CU1	OFF OUNCES		WASTE TONS		TOTAL TONS	STRIP RATIO
JULY		125,000	0.0355	4,437		195,000		320,000	1.6
AUG		96.000	0.0352	3,378	 	231,000		327,000	2.4
SEPT	į	191,000	0.0333	6,368	İ	268,000	i	459,000	1.4
TOTAL		412.000	0.0344	14,183		694,000		1.106,000	1.68
DIFF %DIFF	•	(3,866) -2.2%	0.0058 14.4%	2,023 12.5%	! !	(348) -0.1%	l !	(9,214) -0.8%	

NOTE: MODEL 91-A2 WAS MODIFIED FOR NEAR BY BLAST HOLE DATA, SO THE FIRST LEVELS MINED ARE THE MOST ACCURATE

NOTE: THE AVERAGING OF BLAST HOLE GRADES FOR ACTUAL PRODUCTION MAY OVERESTIMATE THE TRUE MINED GRADE

DATE:

NOVEMBER 8, 1991

TO:

JIM BARRON

FROM:

VICTOR MILLER/MIKE GOLLIHER

SUBJECT:

MONTHLY REPORT - OCTOBER, 1991

MCDL_ VMCh_

Mining

A total of 647,221 tons of material was moved this month. This does not include the 56,896 tons of crushed ore moved to the Ruby Stockpile. Total tons budgeted for October were 707,000 tons, which makes us 8% below budget. If we include stockpiled ore, total tons moves is 704,177 tons, which is less than 1% below budgeted total tons moved.

This appears to be the maximum production that Blattner is capable of without adding a second shift or working Saturdays as well as Sundays. The drills continue to work three 10-hour shifts per day, six days per week, and they are just barely keeping ahead of the loaders. More equipment would probably not enable us to mine any quicker as there are only two to three areas available for drilling, blasting, or mining at any one time.

Twice during the month, October 9 through October 12, and October 28 through October 31, the mine was unable to supply ore to the crusher on day shift. In both cases, ore that was in the same area on the bench above either turned to sulfide ore or turned to waste. Mined ore versus model ore was 12,706 tons (8.5%) low this month. What that figure does not show is other areas that were either abandoned because of no oxide ore or areas that were drilled and blasted, were found to be waste, and scheduled to be mined later because feeding the crusher was more important.

Cell I was unloaded and loaded this month and 81% of Cell 2 was unloaded.

Stockpile volumes at the end of the month were as follows:

	TONS	GRADE
Ruby Stockpile	56,896	0.034 opt
Crusher Stockpile	6,478	0.039 opt
ROM Stockpile	26,000	0.040 opt

If the Ruby stockpile is made any larger than it already is, it will encroach on a haul road to the waste dump.

A new 25 ft by 25 ft block model was initialized this month in hopes of better developing a model that could more closely predict changes in ore boundaries and ore type as well as grade. This new model is complete up to the point of digitizing in the new Southeast Langley area geology. The 16 MT sulfide pit was updated with new pit slopes and an oxide, Anchor Hill pit was developed up to the Forest Service boundary so that we could get a head start on the permitting process.

Rehabilitation work on the access road scheduled for this month was delayed because of heavy snows on October 28. Hopefully, we can still reschedule that work yet this fall.

A memo was prepared regarding the review of Golden Reward's reserves and mining plans.

rl

c: Rod MacLeod

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET OCTOBER 1991

	*	OCTOBER		YEAR TO DATE			
DESCRIPTION	1991 Budget*	Actual	Variance	1991 Budget*	Actual	Variance	
Ore Mined (tons)	165,000	136,294	(28,706)	1,210,000	1,082,086	(127,914)	
Waste Mined (tons)	325,000	312,434	(12,566)	2,555,000	2,288,396	(266,604)	
Total Mined (tons)	490,000	448,728	(41,272)	3,765,000	3,370,482	(394,518)	
Grade Ore Mined (oz/ton Au)	0.044	0.040	(0.004)	0.041	0.044	0.003	
Ore Crushed (tons)	165,000	128,221	(36,779)	1,210,000	1,110,459	(99,541)	
Grade Ore Crushed (oz/ton Au)	0.040	0.035	0.005	0.037	0.039	0.002	
Ore to Pads (tons)	152,000	72,056	(79,944)	1,158,000	1,129,336	(28,664)	
Spent Ore From Pads (tons)	65,000	126,437	61,437	1,041,000	1,143,580	102,580	
Metal Produced (oz):							
Au	3,335	3,015.98	(319.02)	29,260.0	25,737.18	(3,522.82)	
Ag	4,002	3,382.04	(619.96)	27,466.0	31,896.10	4,410.10	

^{*} Revised schedule for the remainder of 1991

RECONCILIATION SECOND 1/2 OF 1991 WITH 91-A2 MODEL 11/08/91

CRUSHED ORE W/O ADJUSTMENTS FOR ROM STOCKPILE

		CRUSHED	ORE		}
MONTH	- 1	TONS	GRADE	OUNCES	ļ
	===:				===
	1				1
JULY	1	106,726	0.039	4,162	1
AUG	1	101,381	0.037	3,751	1
SEPT	1	176,396	0.035	6,174	1
OCT	!	128,220	0.035	4,488	1
	===:				a = 2
TOTAL	1	512,723	0.0362	18,575	1

	NOTE THE	MODEL G	RADE IS	VERY CL	OSE T	THE CRU	SHED (GRADE
ACTUAL P	RODUCTION						SSAYS	
		ORE @ .					i	TOTAL
HTMOH	I TO	NS G	RADE C	DUNCES	!	TONS	ļ	TONS
	========	=======			=====		====:	=======
	i				!		!	
JULY						199,082		
AUG	1 111							
SEPT						245.212		
OCT	1 136	, 294	0.040	5.452	i	312,434	*	448.728
		= = = = = =	======		====:		=====	*******
TOTAL	. 539	.428 0	.0401	21,657	i i	, 006, 036	1 1,	,545,514
HODEL '3		IMATION : ORE 0.0	22 CUTOE	E	!	WASTE	1	TOTAL TONS
	: 125							
	. 95							
SEPT	191	,ଉଡ୍ଡ	0.033	6,368		268,000	ļ	459,000
OCT	. 149	.ଡଡଡ (D.035	5,215	:	328,000		477,000
TOTAL	1 561	.000 0	. 0346	19,398	: 1	.021,000	1 1,	582,000
	CE MINED			2 250		114 914)	:	(36.486)

DIFFERENCE MINED VS MODEL 91-A2			
DIFF ' (21.572) -0.1047	2.259	(14.914)	(36,486)
907FF 47.38	1 6 4 1	-: 52 :	-2.3%

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

	TONS	l A.A.	Α.Α.	Fire	Fire	
Date					ounces	
						
10/01/91	10266.2	0.031	318.252	0.038	390.116	
10/02/91	7062.4	0.032	225.997	0.037	261.309	
10/03/91	6385.1	0.019	121.317	0.020	127.702	
10/04/91	7636.1	0.024	183,266	0.029	221.447	
10/07/91 l				0.046	380.020	
10/08/91				0.028	200.707	
10/09/91	5886.8	0.023	135.396	0.026	153.057	
10/10/91	4529.0	0.022	99.638	0.026	117.754	
10/14/91				•		
10/15/91	7777.0	0.034	264.418	0.038	295.526	
10/16/91				0.031	283.371	
10/17/91 !	9125.0	0.032	292.000	0.035	319.375	
10/21/91 !	10725.1	0.040	429.004	0.045	482.630	
10/22/91 :	4843.1	0.041	198: 567	0.044	213.096	
10/23/91 1	4089.5	0.037	158.712	9.046	197.317	
10/24/91 (
10/25/91 4	9351.2	ð.929	271.185	9.035	327.292	
					4451.133	

DATE:

NOVEMBER 8, 1991

TO:

JIM BARRON

FROM:

ROD MACLEOD

SUBJECT:

MONTHLY REPORT - OCTOBER 1991

SUMMARY

During the month of October, the geology department:

- .. Completed 4,920 feet of drilling in 20 holes;
- .. Continued to supply drill hole data to Dwain Nell for computer input;
- .. Completed surface geologic mapping in the Southeast Langley area;
- .. Completed a preliminary geologic cross-section interpretation for the Southeast Langley area;
- .. Hired Marty O'Brien as a temporary geologist to assist with the drilling program, and;
- .. Prepared the 1992 exploration budget.

OXIDE EXPLORATION

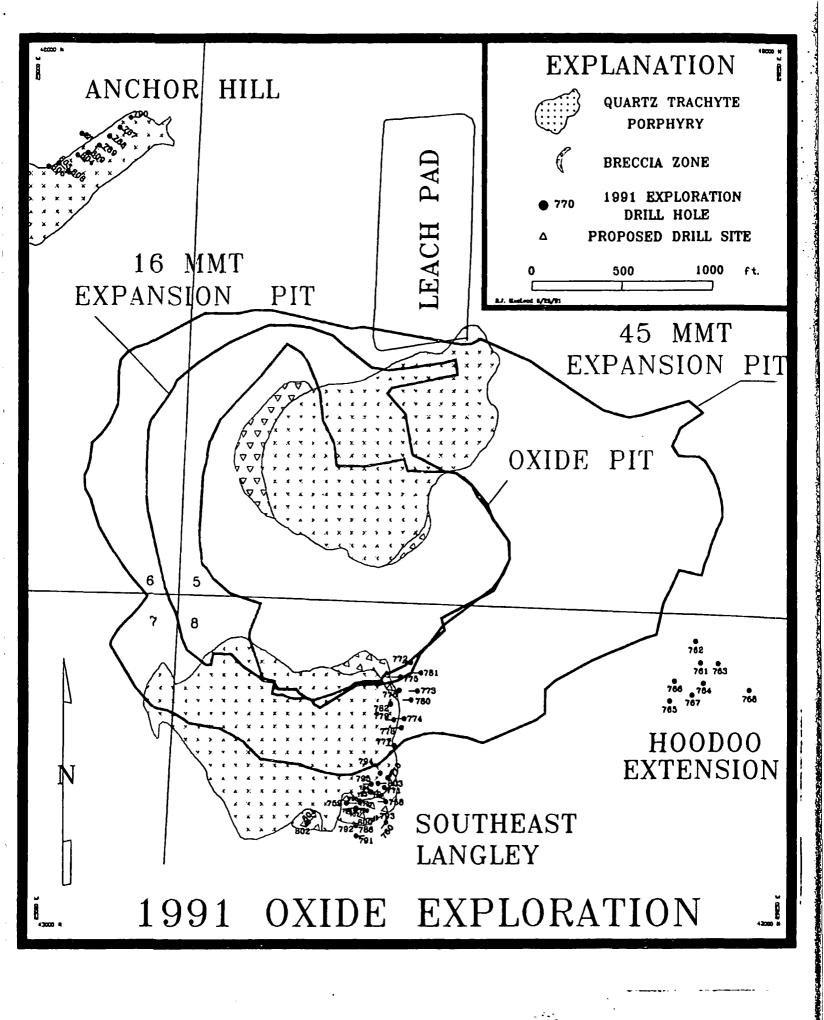
An additional 4,920 feet of drilling was completed in 20 holes this month. Thirteen holes (2,405 feet) were drilled in the Southeast Langley area and seven holes (2,515 feet) were drilled on Anchor Hill. Assays are completed through R91-806 (see attached). Additional drilling has been planned and scheduled for both Anchor Hill and Southeast Langley areas. A second drill rig has been ordered and most drilling should be completed (as far as budgetary constraints) by the first week of so of December.

Surface geologic mapping was completed in the Southeast Langley area which enabled us to complete a preliminary cross-section interpretation of geology. That interpretation has been supplied to Dwain for computer input.

A 1992 exploration budget was completed. A few revisions are needed before it can be returned to Lauren.

Marty O'Brien was hired as a temporary geology to assist with the drilling program. Due to personnel changes at the lab, Robin Symonds now reports full time to the lab.

LAND


Affidavits of Labor for 1990-91 assessment work were recorded and returned by the BLM. One exclusion was noted by the BLM office, which will be investigated during November.

PIT GEOLOGY

Assistance with grade control and model versus actual differences has been provided as needed.

rl

c: Victor Miller
Mike Golliher
Sandor Ringhoffer

*1991 Assays (≥ .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH	AREA	ASSAY SUMMARY		
R91-757	200 feet	Southeast Langley	0 - 35	Fire 35' .035 oxide .035 W.A.G.	
R91-758	320 feet	Southeast Langley	0 - 5 200 - 205 220 - 255	5' @ .022 oxide 5' @ .086 sulphide 35' @ .053 sulphide 45' @ .053 W.A.G.	
R91-759	150 feet	Southeast Langley	0 - 10 65 - 70	10' @ .046 oxide 5' @ .046 oxide 15' @ .046 W.A.G.	
R91-760	200 feet	Southeast Langley		No Significant Assays	
R91-761	140 feet	Hoodoo Extension		No Significant Assays	
R91-762	170 feet	Hoodoo Extension		No Significant Assays	
R91-763	175 feet	Hoodoo Extension		No Significant Assays	
R91-764	140 feet	Hoodoo Extension		No Significant Assays	
R91-765	100 feet	Hoodoo Extension		No Significant Assays	
R91-766	95 feet	Hoodoo Extension	50 - 80	30' @ .021 oxide 30' @ .021 W.A.G.	
R91-767	120 feet	Hoodoo Extension		No Significant Assays	
R91-768	175 feet	Hoodoo Extension	95 - 100	5' @ .030 oxide 5' @ .030 W.A.G.	
R91-769	110 feet	Golden Crest		No Significant Assays	
R91-770	170 feet	Southeast Langley	25 - 75	50' @ .059 .071 oxide 50' @ .059 W.A.G.	

* All AA assays are cyanide extractable Au

*1991 Assays (≥ .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH	AREA	ASSAY SUMMARY		
R91-771	175 feet	Southeast Langley	0 - 15 85 - 90 110 - 120	AA Fire 15' @ .030 .030 oxide 5' @ .076 .079 oxide 10' @ .014 .024 oxide 30' @ .032 W.A.G.	
R91-772	230 feet	Southeast Langley	10 - 15 25 - 50	5' @ .023 .023 oxide 25' @ .020 .021 oxide 30' @ .020 .021 W.A.G.	
R91-773	230 feet	Southeast Langley	60 - 65 90 - 135 185 - 200	5' @ .018 .034 oxide 45' @ .047 .099 oxide 15' @ .030 .046 oxide 60' @ .039 .086 W.A.G.	
R91-774	220 feet	Southeast Langley	90 - 100 125 - 130 170 - 175	10' @ .020 .046 mixed 5' @ .019 .029 mixed 5' @ .016 .050 oxide 20' @ .019 .043 W.A.G.	
R91-775	230 feet	Southeast Langley	80 - 85 95 - 100 120 - 125 165 - 180	5' @ .022 .020 oxide 5' @ .023 .022 oxide 5' @ .020 .019 oxide 15' @ .020 .028 oxide 30' @ .021 .024 W.A.G.	
R91-776	250 feet	Southeast Langley	5 - 10 35 - 65 80 - 95	5' @ .024 .022 oxide 30' @ .036 .042 oxide 15' @ .040 .038 oxide 50' @ .036 .039 W.A.G.	

* All AA assays are cyanide extractable Au

*1991 Assays (> .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH	AREA	ASSAY SUMMARY		
R91-777	100 feet	Southeast Langley	35 - 45	<u>AA</u> <u>Fire</u> <u>5'@</u> .021 5'@ .021 W.A.G.	
R91-778	160 feet	Southeast Langley	40 - 45 135 - 145	5' @ .014 .025 sulphide 10' @ .020 .050 oxide 15' @ .018 .042 W.A.G.	
R91-779	140 feet	Southeast Langley	15 - 25 50 - 75 100 - 120	10'@ .027 .028 oxide 25'@ .020 .022 oxide/mix 20'@ .019 .020 oxide 55'@ .021 .022 W.A.G.	
R91-780	150 feet	Southeast Langley	15 - 20 40 - 45 100 - 105	5' @ N/A .081 oxide 5' @ N/A .044 mixed 5' @ N/A .080 mixed 15' @ .068 W.A.G.	
R91-781	250 feet	Southeast Langley	35 - 40 70 - 75 130 - 145 195 - 200	5' @ N/A .021 oxide 5' @ N/A .020 oxide 15' @ N/A .021 oxide 5' @ N/A .030 mixed 30' @ .022 W.A.G.	
R91-782	150 feet	Southeast Langley	60 - 115 135 - 150	55' @ N/A .053 oxide/mix 15' @ N/A .022 sulphide 70' @ .046 W.A.G	
R91-783	200 feet	Southeast Langley	0 - 20 35 - 50 70 - 110 125 - 145 165 - 170	20' @ .051 .053 oxide 15' @ .026 .028 oxide 40' @ .066 .065 oxide 20' @ .051 .058 oxide 	
R91-784	150 feet	Southeast Langley	0 - 10 25 - 35 65 - 70	10'@ N/A .034 oxide 10'@ N/A .050 oxide <u>5'@ N/A</u> .022 oxide 25'@ .038 W.A.G.	

All AA assays are cyanide extractable Au

*1991 Assays (≥ .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH 170 feet	AREA Southeast Langley	ASSAY SUMMARY		
R91-785			0 - 25 40 - 55	AA Fire 25' N/A .049 oxide 15' N/A .035 oxide 40' .044 W.A.G.	
R91-786	135 feet	Southeast Langley	0 - 105	AA Fire 105'@ N/A .102 oxide 105'@ .102 W.A.G.	
R91-787	385 feet	Anchor Hill	0 - 40 70 - 75 95 - 115 260 - 265 335 - 340 360 - 365	40' @ N/A .039 oxide 5' @ N/A .052 oxide 20' @ N/A .034 oxide 5' @ N/A .028 oxide 5' @ N/A .039 mixed 5' @ N/A .025 mixed 80' @ N/A .037 W.A.G.	
R91-788	400 feet	Anchor Hill	0 - 5 20 - 35 50 - 55 75 - 90	5' @ N/A .032 oxide 15' @ N/A .150 oxide 5' @ N/A .023 oxide 15' @ N/A .041 oxide 40' @ N/A .078 W.A.G.	
R91-789	370 feet	Anchor Hill	0 - 20 40 - 60 75 - 95 120 - 125 150 - 240 265 - 295	20' @ N/A .261 oxide 20' @ N/A .030 oxide 20' @ N/A .105 oxide 5' @ N/A .029 oxide 90' @ N/A .046 oxide 30' @ N/A .146 oxide 185' @ N/A .090 W.A.G.	
R91-790	200 feet	Anchor Hill	5 - 10 15 - 20 65 - 75 95 - 125	5' @ .020 oxide 5' @ .021 oxide 10' @ .031 oxide 30' @ .044 oxide 50' @ .037 W.A.G.	
R91-791	250 feet	Southeast Langley		No Significant Assays	

All AA assays are cyanide extractable Au

*1991 Assays (≥ .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH	AREA	ASSAY SUMMARY		
R91-792	150 feet	Southeast Langley	0 - 25	25' @ AA	Fire .025 oxide
R91-793	200 feet	Southeast Langley	5 - 30 55 - 105	25' @ 50' @ 75' @	.030 oxide <u>.044</u> oxide .039 W.A.G.
R91-794	160 feet	Southeast Langley	45 - 50	5' @	.056 oxide
R91-795	180 feet	Southeast Langley	55 - 110 135 - 160 175 - 180	55' @ 25' @ 5' @	.036 oxide .029 oxide <u>.023</u> sulphide .031 W.A.G.
R91-796	160 feet	Southeast Langley	5 - 90 105 - 115 130 - 140	85' @ 10' @ 105' @	.043 oxide .039 oxide <u>.026</u> oxide/mix .041 W.A.G.
R91-797	150 feet	Southeast Langley	5 - 25	20' @	.058 oxide
R91-798	200 feet	Southeast Langley	0 - 40 135 - 150	40' @ 15' @ 55' @	.060 oxide .021 oxide/mix .049 W.A.G.
R91-799	240 feet	Southeast Langley	0 - 55	55' @	.028 oxide .028 W.A.G.
R91-800	200 feet	Southeast Langley	0 - 5 125 - 130 145 - 175	5' @ 5' @ 30' @ 40' @	.021 oxide .023 mix .032 mix/sulphide .030 W.A.G.
R91-801	120 feet	Southeast Langley		No Significa	int Assays
R91-802	160 feet	Southeast Langley		No Significant Assays	
R91-803	235 feet	Southeast Langley	20 - 35 70 - 120 210 - 230	15' @ 50' @ 20' @ 85' @	.023 oxide .029 oxide/mix .035 mix/sulphide .029 W.A.G.

All AA assays are cyanide extractable Au

OXIDE EXPLORATION PROGRAM

*1991 Assays (≥ .02 opt) (Fire assays are shown if completed)

HOLE NO.	TOTAL DEPTH	AREA	ASSAY SU	MMARY	
R91-804	400 feet	Anchor Hill	65 - 110 115 - 125 145 - 170 185 - 215 245 - 250 290 - 305 325 - 335	35' @ 10' @ 25' @ 30' @ 5' @ 15' @ 10' @ 130' @	FIRE .055 oxide .026 oxide .024 oxide .025 oxide .023 oxide .022 oxide .040 oxide .034 W.A.G.
R91-805	400 feet	Anchor Hill	120 - 135 150 - 155 190 - 200 215 - 225 300 - 400	15' @ 5' @ 10' @ 100' @ 140' @	FIRE .028 oxide .033 oxide .076 oxide .034 oxide .210 oxide .162 W.A.G.
R91-806	405 feet	Anchor Hill	5 - 25 260 - 315 330 - 405	15' @ 55' @ 75' @ 150' @	FIRE .028 oxide .020 oxide .207 oxide .114 W.A.G.
R91-807	400 feet	Anchor Hill		Assays Pend	ling
R91-808	350 feet	Anchor Hill		Assays Pend	ling
R91-809	360 feet	Anchor Hill		Assays Pend	ling

^{*} All AA assays are cyanide extractable Au

W.A.G. = weighted average grade

NOTE: SOME RESULTS FOR R91-804 ARE BEING CHECKED

DATE:

DECEMBER 13, 1991

TO:

JIM BARRON

FROM:

ROD MACLEOD

SUBJECT:

MONTHLY REPORT - NOVEMBER 1991

SUMMARY

During the month of November, the geology department:

Completed 7,545 feet of drilling in 31 holes;

Worked with Dwain Nell and Vic Miller on a reserve estimate for Anchor Hill and the Southeast Langley area;

Began planning for metallurgical sampling of Anchor Hill; and,

Revised the 1992 exploration budget.

OXIDE EXPLORATION

An additional 7,545 feet of drilling was completed in 31 holes this month. Nineteen holes (3,655 feet) were drilled in the Southeast Langley area and twelve holes (3,885 feet) were drilled on Anchor Hill. The total to date for the oxide project is 18,825 feet in 84 holes. The total cost of the program to date is estimated to be \$220,000.

Assay results are complete through R91-831 and are summarized on the attached sheets. Assays are still pending for R91-532 through R91-847 (16 holes). Due to personnel changes in the prep lab and current production levels, a back log of exploration samples was experienced during the month. In addition, a second exploration rig was brought on site which increased the number of samples submitted to the lab by 50-75%.

BLOCK MODELING

Geology assisted Dwain Nell and Vic Mill with exploration data input, a preliminary reinterpretation of geological data for computer input, and checking block model data. We are reporting reserve results as quickly as they become available.

OXIDE METALLURGY

Several options are being reviewed in obtaining bulk samples for metallurgical testwork on oxide reserves. The options being explored include: 1) surface trenching; 2) underground - existing workings; 3) drill core; and, 4) drill cuttings. The first two options are least costly, but will not provide a representative samples. They will, however, provide us with some useful data if we can sample > .250opt material.

Drill core (PQ) is proposed as the best sample for testwork. Drill cuttings can be used for any additional bottle roll tests; cyanide extractable versus fire analyses; and coarse gold testwork. At the very least, some coarse gold testwork is needed (e.g. bench screen analyses and/or metallic gold assays) for Anchor Hill.

rl

c: Victor Miller
Mike Golliher
Sandor Ringhoffer

DATE:

DECEMBER 13, 1991

TO:

JIM BARRON

FROM:

VICTOR MILLER/MIKE GOLLIHER

SUBJECT:

MONTHLY REPORT - NOVEMBER, 1991

Vii Miller M. Coll

Mining

November production from the mine totaled 385,344 tons (4% below a budget of 400,000 tons). Shortages of ore occurred twice during the month, November 1 and November 25-27. In both cases, ore that was on the bench above did not remain continuous vertically.

Mined ore versus model ore was 38,550 tons (26%) low this month. Much of this difference became evident in October, but we directed mining to other areas. The greatest loss occurred on the 5440 bench in the Sunday Pit in the apex area where we lost 17,154 tons to sulfide. We also lost 16,494 tons on the 5340 bench in the Dakota Maid and 4902 on the 5420 bench in the Dakota Maid Pit. Looking ahead, we can expect the same if not more losses in the apex area as it has almost completely changed to sulfide.

Production has now shifted from being primarily in Phase 1 to being in Phase 2. Seventy eight percent of the ore and 83% of the waste mined this month came from the Phase 2 5440 and 5420 benches. The remainder of this month's production came from the Dakota Maid 5340 bench in Phase 1. Since the Dakota Maid Phase 2 pit is now between the 5420 bench, the north haulroad along access road C will no longer be needed. All remaining ore from both pits will now come out the haulroad by the crusher.

Stockpile volumes at the end of the month were as follows:

	TONS	GRADE
Ruby Stockpile	64,555.8	0.038 opt
Crusher Stockpile	53,220.4	0.050 opt
ROM Stockpile	12,500	0.040 opt

The South Sunday pit area used for stockpiling was lined with a one-foot layer of -1/4" limestone fines. The old workings encountered in that area were also filled with limestone fines and was sealed with clayey material from the Dakota Maid Pit.

ENGINEERING

The new main pit 25 ft by 25 ft mineral model was completed. The new model (91-52) predicted nearly identical tonnage and grades as the previous 50 ft by 50 ft (90-4J) model. Using the new model and the bulk of the 1991 exploration drilling for the area, it appears that the Southeast Langley area would add approximately 170,000 ore tons at .037 oz/ton and a 1.5:1 strip ratio.

A new Anchor area 25 ft by 25 ft model was also created. Several possible pit designs have been evaluated based on the following concepts:

- a. On/off present pad, inside Brohm-Forest Service boundary.
- b. On/off present pad, no boundaries.
- c. Dedicated pad with .015 to .025 oz/ton ore going directly to the pad without crushing and plus .025 oz/ton ore being crushed.

Preliminary results indicate that Option C has the best return on the investment.

A reevaluation and sensitivity of the 16 million ton sulfide project was done.

rl

c: Rod MacLeod

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET NOVEMBER 1991

	NOVEMBER			YEAR TO DATE		
DESCRIPTION	1991 Budget*	Actual	Variance	1991 Budget*	Actual	Variance
Ore Mined (tons)	142,000	108,450	(33,550)	1,352,000	1,190,536	(161,464)
Waste Mined (tons)	258,000	276,894	18,894	2,813,000	2,565,290	(247,710)
Total Mined (tons)	400,000	385,344	(14,656)	4,165,000	3,755,826	(409,174)
Grade Ore Mined (oz/ton Au)	0.039	0.050	0.011	0.041	0.045	0.004
Ore Crushed (tons)	142,000	122,182	(19,818)	1,352,000	1,232,640	(119,360)
Grade Ore Crushed (oz/ton Au)	0.036	0.052	0.016	0.038	0.040	0.002
Ore to Pads (tons)	152,000	110,943	(41,057)	1,310,000	1,240,279	(69,721)
Spent Ore From Pads (tons)	152,000	96,928	(55,072)	1,193,000	1,240,508	47,508
Metal Produced (oz):						
Au	3,455	2,823.97	(631.03)	32,715.0	28,561.15	(4,153.85)
Ag	4,146	2,646.89	(1,499.11)	31,612.0	34,542.99	2,930.99

^{*} Revised schedule for the remainder of 1991

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

	TONS	A.A.	A.A.	Fire	Fire	
Date	1	Au opt	ounces	Au opt	ounces	
11/04/91	7456.2	0.024	178.949	0.029	216.230	
11/05/91	7164.0	0.024	171.936	0.030	214.920	
11/06/91	5441.0	0.031	168.671	0.036	195.876	
11/07/91	10459.0	0.029	303.311	0.043	449.737	
11/08/91	6431.2	0.037	237.954	0.048	308.698	
11/11/91	10750.0	0.084	903.000	0.114	1225.500	
11/12/91	9180.3	0.046	422.294	0.062	569.179	
11/13/91	9004.0	0.036	324.144	0.048	432.192	
11/14/91	8977.0	0.041	368.057	0.049	439.873	
11/15/91	6327.4	0.054	341.680	0.062	392.299	
11/18/91	6629.6	0.029	192.258	0.036	238.666	
11/19/91	10221.6	0.042	429.307	0.047	480.415	
11/20/91	8893.6	0.045	400.212	0.058	515.829	
11/21/91	8266.7	0.034	281.068	0.047	388.535	
11/22/91	6980.3	0.035	244.311	0.041	286.192	
TOTAL	122181.9	0.041	4967.152	0.052	6354.141	

DATE:

JANUARY 10, 1992

TO:

ЛМ BARRON

FROM:

VICTOR MILLER/MIKE GOLLIHER 1/2: Mille

SUBJECT:

MONTHLY REPORT - DECEMBER, 1991

Moll.

Mining

In December, a total of 98,312 tons of ore and 248,250 tons of waste were mined. Ore mined was 16,688 tons below budget and waste tons mined was 33,250 tons over budget. It should be noted that although there was a period when the mine had to dedicate every piece of equipment to waste mining, the Crusher and Ruby stockpiles were full. The mine will continue to have ore production shortages partially due to losses attributed to the model, but also because the pits are in their last stages of mining and as planned the mine is no longer as flexible. We will continue to do everything possible to try to maintain a consistent crusher feed.

Active benches during the month included the Dakota Maid Phase I 5340 and Phase 2 5400 and the Sunday Pit Phase 2 5420 and 5400 levels. The sulphide ore stockpile is rapidly filling up so we will need to find another place to stockpile that material.

Stockpile volumes at the end of the month were as follows:

	TONS	GRADE
Ruby Stockpile	67,746.8	0.040 opt
Crusher Stockpile	0	
ROM Stockpile	40,600	0.045 opt

Engineering

The Strawberry Creek diversion culvert was replaced early in the month. The culvert had been corroded completely through along the bottom. It was replaced with a culvert which has a 10 mil polymer coating. While there was no guarantee as to the performance of this coating it is still an improvement over the mastic coated culvert it replaced. A few minor details are all that remain of that project.

Pioneer Construction is scheduled to bring their small crushing plant in early January. The less than 5/8" product will be used for road sanding.

Several days were spent presenting and preparing data for outside companies.

Preliminary feasibility analysis was made on the sulphide stockpile leaching proposal and the Anchor Hill project.

General

In December when Cell 4 would not pass neutralization, every crushed ore stockpile was full, so the mine had to suspend crushing. It is interesting to note in relation to the few brief periods during 1991 where the mine was unable to supply ore to the crusher. If the ore shortfall during the year had never occurred, the crushed ore stockpiles would have filled soon due to the Cell 4 delay. Thus the crusher would have had to shut down longer waiting for Cell 4 to pass. The bottom line is that during the year no Cell ever waited to be loaded and leached because there wasn't crushed ore to put on it.

/rl

c: Rod MacLeod

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET DECEMBER 1991

	DECEMBER			YEAR TO DATE		
DESCRIPTION	1991 Budget*	Actual	Variance	1991 Budget*	Actual	Variance
Ore Mined (tons)	115,000	98,312	(16,688)	1,467,000	1,288,848	(178,152)
Waste Mined (tons)	215,000	248,250	33,250	3,028,000	2,813,540	(214,460)
Total Mined (tons)	330,000	346,562	16,562	4,495,000	4,102,388	(392,612)
Grade Ore Mined (oz/ton Au)	0.045	0.052	0.007	0.041	0.045	0.004
Ore Crushed (tons)	115,000	84,787	(30,213)	1,467,000	1,317,427	(149,573)
Grade Ore Crushed (oz/ton Au)	0.041	0.057	0.016	0.038	0.041	0.003
Ore to Pads (tons)	114,000	92,145	(21,855)	1,424,000	1,332,424	(91,576)
Spent Ore From Pads (tons)	152,000	67,504	(84,496)	1,345,000	1,308,012	(36,988)
Metal Produced (oz):						
Au	3,034	1,741.65	(1,292.35)	35,749.0	30,302.80	(5,446.20)
Ag	3,640	2,682.10	(957.90)	35,252.0	37,165.46	1,913.46

^{*} Revised schedule for the remainder of 1991

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR DECEMBER 1991

DESCRIPTION	UNITS ARE TONS MONTH TO DATE	YEAR	PROJECT TO DATE
SUNDAY PIT ORE	31796	657952	3002814
SUNDAY PIT WASTE	193630	1569414	5101849
TOTAL SUNDAY PIT	225426	2227366	8104663
DAKOTA PIT ORE	66516	630896	849580
DAKOTA PIT WASTE	54620	1244126	2406376
TOTAL DAKOTA MAID	121136	1875022	3255956
TOTAL ORE MINED	98312	1288848	3852394
TOTAL WASTE MINED	248250	2813540	7508225
TOTAL MINED	346562	4102388	11360619
GRADE ORE MINED	AU	AU	AU
SUNDAY PIT ORE	0.032	0.045	0.043
DAKOTA PIT ORE	0.062	0.046	0.047
TOTAL ORE MINED	0.052	0.045	0.044

ASSUME: 2 TONS/BCY

ASSUME: 26.0 BCY/TRUCK

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

	TONS	A.A.	A.A.	Fire	Fire	
Date	Ì	Au opt	ounces	Au opt	ounces	
12/02/91	8219.2	0.031	254.795	0.038	312.330	
12/03/91	4999.1	0.049	244.956	0.058	289.948	
12/04/91	6347.2	0.053	336.402	0.079	501.429	
12/05/91	5835.4	0.074	431.820	0.085	496.009	
12/06/91	6792.5	0.068	461.890	0.090	611.325	
12/12/91	6391.7	0.033	210.926	0.042	268.451	
12/13/91	6493.3	0.019	123.373	0.023	149.346	
12/23/91	6195.8	0.055	340.769	0.074	458.489	
12/24/91	8884.8	0.033	293.198	0.042	373.162	
12/27/91	9642.5	0.057	549.623	0.071	684.616	
12/29/91	5825.4	0.022	128.159	0.027	157.286	
12/30/91	8033.4	0.042	337.403	0.052	417.737	
12/31/91	1126.2	0.047	52.931	0.068	76.582	
TOTAL	84786.5	0.044	3766.245	0.057	4796.710	

DATE:

FEBRUARY 11, 1992

TO:

JIM BARRON

FROM:

ROD MACLEOD/SANDOR RINGHOFFER

R.S.M. 5

SUBJECT:

MONTHLY REPORT - JANUARY, 1992

SUMMARY

During the month of January, the geology department:

- Compiled data for and began writing portions of the Anchor Hill reserve report;
- Worked with Laura on a plan for metallurgical testwork for Anchor Hill ore;
- Worked with the Environmental Department on sampling of Ruby waste rock;
- Worked with Lance on identification and location of old King workings and the possible source(s) of drainage;
- Notified Homestake of our annual Affidavit of Labor filing with the Bureau of Land Management and Lawrence County; and,
- Continued final wall pit mapping and compilation of geologic data onto bench level maps.

rl

c: Victor Miller Mike Golliher

DATE:

FEBRUARY 10, 1992

TO:

JIM BARRON

FROM:

VICTOR MILLER/MIKE GOLLIHER

SUBJECT:

MONTHLY REPORT - JANUARY, 1992

Mining

A total of 98,512 tons of ore at a .053 oz/ton grade and 279,824 tons of waste was mined for the month. Of this total, 30,198 tons of ore and 169,868 tons of waste was mined from the Sunday 5400 bench, and 68,314 tons of ore and 109,868 tons of waste was mined from the Dakota Maid 5400 and 5380 benches.

Because of the temporary suspension of mining in the Phase I Dakota Maid area below 5340 elevation, the upper Phase 2 Dakota Maid area became the prime ore producing area. The Sunday Phase 2 Dakota Maid area became the prime ore producing area. The Sunday Phase 2 pit will only contribute minor amounts of ore at a high strip ratio until it progresses below the 5360 level (note - mining here is on the 5400 bench now). This has caused two operational problems. First, during bench transitions in the Dakota Maid, maintaining a continuous ore supply is difficult. Second, the waste mining rate for the Dakota Maid and Sunday areas had to be increased in order to expose the budgeted ore.

For January, the under budget ore production did not hurt the mine's gold production because by the end of the month the crusher stockpile and Ruby crushed ore stockpile were full. The maximum amount of ore had also been stacked on Cell 6 while waiting for Cell 7 to pass off loading. So any additional mine ore production would have ended in the Run of Mine stockpile that feeds the crusher.

In January, 64,462 tons were stocked on Cell 5. This cell was completed on January 16. Stacking on Cell 6 began on January 28 and 29,120 tons was stacked by the end of the month. Off loaded spent ore totaled 113,031 tons from both Cells 5 and 6.

Stockpile volumes at the end of the month were:

	TONS	GRADE
Ruby Stockpile	67,746.8	0.040 opt
Crusher Stockpile	26,255.2	0.054 opt
ROM Stockpile	17,275.	0.046 opt
Loaded on Cell 6*	29,120. 0.054 opt	

^{*} Not under leach

Engineering

<u>Sulphide Stockpile Project</u> - A report was completed on the sulphide stockpile resource. The economic model for this material indicates that the mine could realize between one and two million dollar profit from this material. Several key factors such as crushing costs have not been determined to date.

Anchor Hill Project - A detailed report on this potential resource is being prepared. The report will include how the deposit was modeled, the mining plans and production schedules, and an economic model. The economic model and most of the other sections were completed by the end of the month.

<u>Uninterpolated Blocks</u> - A report was made which demonstrated that the uninterpolated blocks within the 16 million ton sulphide pit could not have an impact on the project.

Ray Grant - Several days were spent with Ray Grant on the future options at the mine.

Phelps Dodge - One day was spent reviewing the mine's reserves and mining plans.

<u>Placer Dome</u> - One day was spent reviewing the mine's reserves and mining plans.

General

The north end of the Dakota Maid pit was recontoured and plans are being made to try some "rock sculpting" in that area.

Pioneer Construction completed crushing road sanding rock. Total tons recrushed were 2,100.

Berms were cut around all topsoil piles not in the immediate plant site area. Straw bales were also placed around those piles to help control erosion.

/rl

c: Rod MacLeod

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET JANUARY 1992

	JANUARY			YEAR TO DATE		
DESCRIPTION	1992 Budget*	Actual	Variance	1992 Budget	Actual	Variance
Ore Mined (tons)	115,000	98,512	(16,488)	115,000	98,512	(16,488)
Waste Mined (tons)	220,000	279,824	59,824	220,000	279,824	59,824
Total Mined (tons)	335,000	378,336	43,336	335,000	378,336	43,336
Grade Ore Mined (oz/ton Au)	0.047	0.053	0.006	0.047	0.053	0.006
Ore Crushed (tons)	115,000	119,837	4,837	115,000	119,837	4,837
Grade Ore Crushed (02/ton Au)	0.042	0.056	0.014	0.042	0.056	0.014
Ore to Pads (tons)	147,000	93,582	(53,418)	147,000	93,582	(53,418)
Spent Ore From Pads (tons)	147,000	113,031	(33,969)	147,000	113,031	(33,969)
Metal Produced (oz):						
Au	2,762	2,820.57	68.57	2,762	2,830.57	68,57
Ag	2,000	3,670.25	1,670.25	2,000	3,670.25	1,670.25

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR JANUARY 1992

	UNITS ARE TO		
DESCRIPTION	MONTH TO DATE	YEAR TO DATE	PROJECT TO DATE
SUNDAY PIT ORE	30198	30198	3033012
SUNDAY PIT WASTE	169868	169868	5271717
TOTAL SUNDAY PIT	200066	200066	8304729
DAKOTA PIT ORE	68314	68314	917894
DAKOTA PIT WASTE	109956	109956	2516332
TOTAL DAKOTA MAID	178270	178270	3434226
TOTAL ORE MINED	98512	98512	3950906
TOTAL WASTE MINED	279824	279824	7788049
TOTAL MINED	378336	378336	11738955
GRADE ORE MINED	AU 	AU 	AU
SUNDAY PIT ORE	0.045	0.045	0.043
DAKOTA PIT ORE	0.056	0.056	0.048
TOTAL ORE MINED	0.053	0.053	0.044

ASSUME: 2 TONS/BCY ASSUME: 26.0 BCY/TRUCK

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

Daha	TONS	A.A.		Fire	Fire		
Date	 	Au opt 	ounces	Au opt	ounces		
01/02/92	8528.0	0.040	341.120	0.051	434.928	HEAP	57-5
01/08/92	4108.4	0.055	225.962	0.063	258.829		
01/09/92	7699.1	0.041	315.663	0.052	400.353		
01/10/92	9044.7	0.043	388.922	0.051	461.280		
01/13/92	6061.6	0.037	224.279	0.038	230.341		
01/14/92	5850.8	0.036	210.629	0.045	263.286		
01/15/92	5288.3	0.056	296.145	0.081	428.352		
01/16/92	5441.9	0.065	353.724	0.079	429.910		
01/17/92	7388.2	0.040	295.528	0.059	435.904		
01/20/92	5051.1	0.066	333.373	0.082	414.190		
01/22/92	5801.1	0.044	255.248	0.051	295.856	HEAP	58-6
01/23/92	4491.3	0.041	184.143	0.050	224.565		
01/24/92	7760.5	0.036	279.378	0.041	318.181		
01/27/92	8202.9	0.048	393.739	0.060	492.174		
01/28/92	7548.7	0.062	468.019	0.079	596.347		
01/29/92	6708.7	0.046	308.600	0.054	362.270		
01/30/92	7389.1	0.043	317.731	0.063	465.513		
01/31/92	7472.9	0.027	201.768	0.034	254.079		
	!]			
				!			
TOTAL	119837.3	0.045	5393.971	0.056	6766.358		

CRUSHED ORE AA VERSUS FIRE ASSAYS

		Grade		
Period	KTons	Fire Oz/Ton	AA Oz/Ton	AA/Fire
December 1990 January 1991 February March April May June July August September	42 119 45 107 111 119 97 108 107 176	.045 .034 .034 .045 .043 .040 .041 .039 .039	.040 .031 .033 .043 .036 .034 .037 .032 .032	.89 .91 .97 .96 .84 .85 .90 .82
October November December	128 122 42	.035 .035 .052 .045	.029 .029 .041 .041	.82 .82 .79 .75
January 1992	120	.056	.045	.73

The Milling Coll

DATE:

FEBRUARY 10, 1992

TO:

JIM BARRON

FROM:

VICTOR MILLER/MIKE GOLLIHER

SUBJECT:

MONTHLY REPORT - JANUARY, 1992

Mining

A total of 98,512 tons of ore at a .053 oz/ton grade and 279,824 tons of waste was mined for the month. Of this total, 30,198 tons of ore and 169,868 tons of waste was mined from the Sunday 5400 bench, and 68,314 tons of ore and 109,868 tons of waste was mined from the Dakota Maid 5400 and 5380 benches.

Because of the temporary suspension of mining in the Phase I Dakota Maid area below 5340 elevation, the upper Phase 2 Dakota Maid became the prime ore producing area. The Sunday Phase 2 pit will only contribute minor amounts of ore at a high strip ratio until it progresses below the 5360 level (note - mining here is on the 5400 bench now). This has caused two operational problems. First, during bench transitions in the Dakota Maid, maintaining a continuous ore supply is difficult. Second, the waste mining rate for the Dakota Maid and Sunday areas had to be increased in order to expose the budgeted ore.

For January, the under budget ore production did not hurt the mine's gold production because by the end of the month the crusher stockpile and Ruby crushed ore stockpile were full. The maximum amount of ore had also been stacked on Cell 6 while waiting for Cell 7 to pass off loading. So any additional mine ore production would have ended in the Run of Mine stockpile that feeds the crusher.

In January, 64,462 tons were stocked on Cell 5. This cell was completed on January 16. Stacking on Cell 6 began on January 28 and 29,120 tons was stacked by the end of the month. Off loaded spent ore totaled 113,031 tons from both Cells 5 and 6.

Stockpile volumes at the end of the month were:

	TONS	GRADE
Ruby Stockpile	67,746.8	0.040 opt
Crusher Stockpile	26,255.2	0.054 opt
ROM Stockpile	17,275.	0.046 opt
Loaded on Cell 6*	29,120.	0.054 opt

^{*} Not under leach

Engineering

<u>Sulphide Stockpile Project</u> - A report was completed on the sulphide stockpile resource. The economic model for this material indicates that the mine could realize between one and two million dollar profit from this material. Several key factors such as crushing costs have not been determined to date.

Anchor Hill Project - A detailed report on this potential resource is being prepared. The report will include how the deposit was modeled, the mining plans and production schedules, and an economic model. The economic model and most of the other sections were completed by the end of the month.

<u>Uninterpolated Blocks</u> - A report was made which demonstrated that the uninterpolated blocks within the 16 million ton sulphide pit could not have an impact on the project.

Ray Grant - Several days were spent with Ray Grant on the future options at the mine.

Phelps Dodge - One day was spent reviewing the mine's reserves and mining plans.

<u>Placer Dome</u> - One day was spent reviewing the mine's reserves and mining plans.

General

The north end of the Dakota Maid pit was recontoured and plans are being made to try some "rock sculpting" in that area.

Pioneer Construction completed crushing road sanding rock. Total tons recrushed were 2,100.

Berms were cut around all topsoil piles not in the immediate plant site area. Straw bales were also placed around those piles to help control erosion.

/rl

c: Rod MacLeod

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET JANUARY 1992

		JANUARY			YEAR TO DATE		
DESCRIPTION	1992 Budget*	Actual	Variance	1992 Budget	Actual	Variance	
Ore Mined (tons)	115,000	98,512	(16,488)	115,000	98,512	(16,488)	
Waste Mined (tons)	220,000	279,824	59,824	220,000	279,824	59,824	
Total Mined (tons)	335,000	378,336	43,336	335,000	378,336	43,336	
Grade Ore Mined (oz/ton Au)	0.047	0.053	0.006	0.047	0.053	0.006	
Ore Crushed (tons)	115,000	119,837	4,837	115,000	119,837	4,837	
Grade Ore Crushed (oz/ton Au)	0.042	0.056	0.014	0.042	0.056	0.014	
Ore to Pads (tons)	147,000	93,582	(53,418)	147,000	93,582	(53,418)	
Spent Ore From Pads (tons)	147,000	113,031	(33,969)	147,000	113,031	(33,969)	
Metal Produced (oz):							
Au	2,762	2,820.57	68.57	2,762	2,830.57	68,57	
Ag	2,000	3,670.25	1,670.25	2,000	3,670.25	1,670.25	

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR JANUARY 1992

	UNITS ARE TO		•
DESCRIPTION	MONTH	YEAR	PROJECT
DESCRIPTION	TO DATE	TO DATE	TO DATE
SUNDAY PIT ORE	30198	30198	3033012
SUNDAY PIT WASTE	169868	169868	5271717
TOTAL SUNDAY PIT	200066	200066	8304729
DAKOTA PIT ORE	68314	68314	917894
DAKOTA PIT WASTE	109956	109956	2516332
TOTAL DAKOTA MAID	178270	178270	3434226
TOTAL ORE MINED	98512	98512	3950906
TOTAL WASTE MINED	279824	279824	7788 04 9
TOTAL MINED	378336	378336	11738955
GRADE ORE MINED	AU	AU	AU
SUNDAY PIT ORE	0.045	0.045	0.043
DAKOTA PIT ORE	0.056	0.056	0.048
TOTAL ORE MINED	0.053	0.053	0.044

ASSUME: 2 TONS/BCY ASSUME: 26.0 BCY/TRUCK

AVERAGE DAILY CRUSHER HEAD Nacn Shake VS Fire

	TONS	A.A.	A.A.	Fire	Fire		
Date	ļ	Au opt	ounces	Au opt	ounces		
01/02/92	 8528.0	0.040	341.120	0.051	434.928	HEAP	57-5
01/08/92	•	•		•			3, 3
	7699.1			•			
01/10/92	•						
01/13/92				•	230.341		
01/14/92	•	0.036		•			
01/15/92	5288.3	<i></i>		•			
01/16/92	•	0.065		0.079	429.910		
01/17/92	7388.2	0.040	295.528	0.059	435.904		
01/20/92	5051.1	0.066	333.373	0.082	414.190		
01/22/92	5801.1	0.044	255.248	0.051	295.856	HEAP	58-6
01/23/92	4491.3	0.041	184.143	0.050	224.565		
01/24/92	7760.5	0.036	279.378	0.041	318.181		
01/27/92	8202.9	0.048	393.739	0.060	492.174		
01/28/92	7548.7	0.062	468.019	0.079	596.347		
01/29/92	6708.7	0.046	308.600	0.054	362.270		
01/30/92	7389.1	0.043	317.731	0.063	465.513		
01/31/92	7472.9	0.027	201.768	0.034	254.079		
	<u> </u>			ļ			
TOTAL	 119837.3	0.045	5393.971	0.056	6766.358		

CRUSHED ORE AA VERSUS FIRE ASSAYS

		Gra		
Period	KTons	Fire Oz/Ton	AA Oz/Ton	AA/Fire
December 1990 January 1991 February March	42 119 45 107	.045 .034 .034	.040 .031 .033	.89 .91 .97
April May June	107 111 119 97	.045 .043 .040 .041	.043 .036 .034 .037	.96 .84 .85 .90
July August September	108 107 176	.039 .039 .035	.032 .032 .029	.82 .82 .82
October November December January 1992	128 122 42 120	.035 .052 .045 .056	.029 .041 .041 .045	.82 .79 .75 .80

Willer Holdelle

DATE:

MARCH 16, 1992

TO:

JIM BARRON

FROM:

VICTOR MILLER/MIKE GOLLIHER

SUBJECT:

MONTHLY REPORT - FEBRUARY, 1992

Mining

February production from the mine totaled 335,944 tons (less than 0.5% over budget). However, the budgeted stripping ratio was 1.9:1 versus an actual stripping ratio of 2.99:1. This high stripping is the result of the unplanned need to concentrate ore and waste mining in the Phase 2 Sunday and Dakota Maid pits. The Dakota Maid pit continues to supply the majority of ore (64% this month) to the crusher. Over the last four months 72% of the ore has come from the Dakota Maid Phase 2 pit.

As of the end of February, Phase 2 had caught up to Phase 1 in the Dakota Maid and was only one bench above Phase 1 in the Sunday pit. When the Sunday pit catches up we can expect the stripping ratio to go down substantially. This should happen late March or early April.

Cell 6 was fully loaded February 7, 70,055.0 tons @ 0.052 opt. Cell 7 was loaded February 13, it contains 51,734 tons @ 0.048 opt. Cell 7 has a lower grade because much of it came from the Ruby stockpile which was built up while crushing for Cell 1 and 3.

Stockpile volumes at the end of the month were:

	TONS	GRADE
Ruby Stockpile	42,470	0.059 opt
Crusher Stockpile	42,207	0.061 opt
ROM Stockpile	18,750	0.047 opt

Since the beginning of 1992, 131,500 tons of sulphide ore with a grade of 0.054 opt has been stockpiled. This brings the total amount stockpiled to 389,500 tons with a grade of 0.052 opt. The cutoff grade was lowered from 0.030 opt to 0.025 opt at the end of 1991 and the grade of ore mined since that time is an actual fire assay grade. Prior to 1992, the grade of the sulphide ore is assumed to be the block model grade.

Engineering

Remaining Reserves - The attached table summarizes the remaining sulphide, mixed and oxide reserves as of March 1, 1992.

Anchor Hill Project - The preliminary feasibility report for the Anchor Hill project was completed. Although some key economic factors such as recovery had to be estimated, it appears that the Anchor Hill project has the potential of yielding a respectable return on the investment.

General - Two small blasts were done to remove safety hazards in the Sunday pit. Both were done with 65° angled holes and air decks. One used two decks, the other used only one. The blast with just one deck gave better results.

A small area at the north end of the Dakota Maid pit was used to experiment with "rock sculpting". We had moderate success. Generally we achieved what we planned but some minor changes could be tried to get better results.

/rl

c: Rod MacLeod

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET FEBRUARY, 1992

		JANUARY			YEAR TO DATE	
DESCRIPTION	1992 Budget*	Actual	Variance	1992 Budget	Actual	Variance
Ore Mined (tons)	115,000	84,222	(30,778)	230,000	182,734	(47,266)
Waste Mined (tons)	220,000	251,722	31,722	440,000	531,546	91,546
Total Mined (tons)	335,000	335,944	944	670,000	714,280	44,280
Grade Ore Mined (oz/ton Au)	0.044	0.067	0.023	0.046	0.060	0.014
Ore Crushed (tons)	115,000	83,344	(31,656)	230,000	203,181	(26,819)
Grade Ore Crushed (oz/ton Au)	0.040	0.066	0.026	0.041	0.060	0.019
Ore to Pads (tons)	115,000	91,669	(22,331)	262,000	186,251	(75,749)
Spent Ore From Pads (tons)	115,000	77,457	(37,543)	262,000	190,488	(71,512)
Metal Produced (oz):						
Au	3,218	2,911.59	(306.41)	5,980	5,742.16	(237.84)
Ag	2,000	3,848.74	1,848.74	4,000	7,518.99	3,518.99

السلاميس.

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR FEBRUARY 1992

DESCRIPTION	UNITS ARE TO MONTH TO DATE	ONS YEAR TO DATE	PROJECT TO DATE
SUNDAY PIT ORE	30230	60428	3063242
SUNDAY PIT WASTE	151296	321164	5423013
TOTAL SUNDAY PIT	181526	381592	8486255
DAKOTA PIT ORE	53992	122306	971886
DAKOTA PIT WASTE	100426	210382	2616758
TOTAL DAKOTA MAID	154418	332688	3588644
TOTAL ORE MINED	84222	182734	4035128
TOTAL WASTE MINED	251722	531546	8039771
TOTAL MINED	335944	714280	12074899
GRADE ORE MINED	AU	AU	AU
SUNDAY PIT ORE	0.040	0.043	0.043
DAKOTA PIT ORE	0.082	0.067	0.049
TOTAL ORE MINED	0.067	0.060	0.044

ASSUME: 2 TONS/BCY

ASSUME: 26.0 BCY/TRUCK

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

	TONS	A.A.	A.A.	Fire	Fire		
Date		Au opt	ounces	Au opt	ounces		
02/03/92	9074.9	0.030	272.247	0.043	390.221	HEAP	58-6
02/04/92	3420.9	0.038	129.994	0.050	171.045		
02/11/92	4347.5	0.055	239.113	0.116	504.310	HEAP	59-7
02/12/92	6149.4	0.040	245.976	0.055	338.217		
02/13/92	6259.3	0.043	269.150	0.056	350.521	HEAP	60-1
02/14/92	5261.4	0.035	184.149	0.043	226.240		
02/18/92	2908.1	0.073	212.291	0.100	290.810		
02/19/92	6960.4	0.091	633.396	0.127	883.971		
02/20/92	6170.1	0.069	425.737	0.086	530.629		
02/21/92	5487.6	0.070	384.132	0.089	488.396		
02/24/92	6461.9	0.046	297.247	0.055	355.405		
02/25/92	7187.7	0.034	244.382	0.045	323.447		
02/26/92	6292.6	0.040	251.704	0.060	377.556		
02/27/92	4488.9	0.030	134.667	0.036	161.600		
02/28/92	2872.8	0.038	109.166	0.037	106.294		
							 -
TOTAL	83343.5	0.048	4033.351	0.066	5498.662		

ADJUSTED MODEL 91-51 PERMITED OXIDE RESERVES AS OF 3/01/92 ORE ADJUSTMENT FACTOR = -0.90

PHASE 1 OXTGE RESÉRVES

03/16/92

:: ::: :::::::::::::::::::::::::::::::	KTONS	(06 ST00 +25H02/1 -H02/T	-	HASTE : KTONS : H/SULF :	KTONS		ZT			/Γ AU 02.	: : KTONS	HOZZT F	٠٢	TOTAL HINED KTONS	STRIP RATIO
P1 5340 ::	20	44	871	192	78	44	3445	55	37	2031	133	41	5477	325	1.44
P1 5320 :: P1 5300 ::	5 9	37 41	200 369	61 : 37 :	19	37 41	699 443	: 29 : 25	32 34	922 765	: 48 : 33	34 36	1621 1208		1.29
::======::: ::	34	#2::::::::::::::::::::::::::::::::::::	:======: 1440	 290 :		42.5	4587					======		=======	
PHASE 2 OXIDE	OAKOTA (10.0	1.5.0.1	. 100	55.0	21.19	. 217	30.0	6303		1.33
::		IDE STOC		: HASTE :	: 0	INTOE O	RE	н	nxeo o	oe	· TOTA	IL OXIDE	'AHT VED	: TOTAL	FUEL
::		+25H02/1	•	KTONS :	-	+22H02			+22H0Z			+22MDZ/		HINED	
AREA Bench !!		H02/T	AU 02.	HZSULF :	KTONS		AU ÓZ.	: KTONS : ======	H02/T	AU OZ.				KTONS	
25UN5340 ::	31	37	1132	79	25	37	932	. ====== : 9	37	333	: ======	37	1265		2.30
25UN5320 ::	27	47	1269	62 :	20	47	931	9	36	324	29	44	1255		2.16
P25UN5300 :: P25UN5280 ::	22 16	57 64	1251 1152	28 : 13 :	20 18	57 64	1129 1152	; 6 ; 6	62 76	391 479	: 26 : 24	58 67	1519 1631	-	1.07
TOTAL ::	======= 9?	======= 49.2			=======			======== : 31			======	50.0		=======	
Subse o nothe	CHARGO	eir occo	ren teror												
:: :: REA Bench ::	SULF	P1T RESE 106 STOC +25M02/1 H02/T	KPILE	: HASTE : : KTONS : : H/SULF :	•	XIDE 0 +22H02 H02/T	ZT		IXED 0 +22M02 M02/T	/T	:	IL OXIDE +22H0Z/ H0Z/T A	٠٢	: TOTAL : MINED : KTONS	STRIP
:: ::: AREA Bench :: ::::::::::::::::::::::::::::::::::	SULF KTONS	106 ST00 +25H02/1 +02/f	CKPILE AU OZ.	KTONS : H/SULF :	KTONS	+22H0Z H0Z/T	/T AU 02. ======	: : KTONS : ======	+22H02 H02/T	/T AU 02. ======	: : KTONS : ======	+22H0Z/ H0Z/T A	·T IU 02. :======	HINED KTONS	STRIP RATIO
#REA Bench :: :======== :: :20M 5360 ::	SULF KTONS ======= 53	106 STOC +25M02/1 H02/F =======	MPILE 1 80 02.	KFONS : H/SULF : ====== : 230 :	 KTONS ====== 22	+22H02 H02/T ====== 79	/T AU 02. ======= 1706	: KTONS ====== 53	+22M02 H02/T ===== 40	2T AU 02. ====== 2124	: : KTONS : ====== : 75	+22H0Z/ H0Z/T A ======= 51	T N 02. ======== 3830	HINED KTONS EEEEEEE	STRIP RATIO ===== 3.08
MREA Bench :: 1224 12	SULF KTONS	106 ST00 +25H02/1 +02/f	CKPILE AU OZ.	KTONS : H/SULF :	 KTONS ====== 22	+22H0Z H0Z/T	/T AU 02. ======= 1706 900	: KTONS ======= E3 E6	+22M02 H02/T ===== 40 +5	/T AU 02. ====== 2124 1539	: KTONS ====== 75 52	+22H0Z/ H0Z/T A ======= 51 47	T IU 02. :====== 3830 2439	HINED KTONS	STRIP RATIO 3.08 3.10
REA Bench :: :======== :: :20M 5360 :: :20M 5340 :: :20M 5320 ::	SULF KTONS ======= 53 62 58 46	10E STOO +25H02/1 H02/F ======= 79 50 60 67	MPILE 1 AU 02. 4195 3105 3456 3075	KFONS : H/SULF : 250 : 162 : 133 : 99	KTONS 22 18 41 38	+22H02 H02/T 79 50 60 67	/T AU 02. ======= 1706	: KTONS ====== 53	+22M02 H02/T ===== 40	2T AU 02. ====== 2124	: : KTONS : ====== : 75	+22H0Z/ H0Z/T A ======= 51	T N 02. ======== 3830	HINED KTONS EEEEEE 305 214 204	STRIP RATIO ===== 3.08 3.10 1.87
AREA Bench : : : : : : : : : : : : : : : : : : :	SULF KTONS 53 62 58 46 31	106 STOO +25H02/T H02/T FFFFFFFFF 50 60 67 58	MPILE FOUND 02. HIPS HIPS HIPS HIPS HIPS HIPS HIPS	KFONS H/SULF ===== 230 162 133 99 56	KTONS 22 18 41 38 28	+22H02 H02/T 79 50 60 67	/T 80 02. ======= 1706 900 2430 2533 1618	KTONS 53 54 34 31 24	+ 22H02 H0Z/T ====== 40 45 46 46 88	/T AU 02. ====== 2124 1539 1408 1118 1030	: KTONS : ====== : 75 : 52 : 71 : 62 : 40	+22H0Z/ H0Z/T A 51 47 54 59 67	T IU 02. ====================================	MI NEO KTONS EEEEEEE 305 214 204 161	STRIP RATIO ==== 3.08 3.10 1.87 1.59
MREA Bench :: -20M 5360 :20M 5340 :20M 5320 :20M 5320 :20M 5280 :20M 5280 :-	SULF KTONS ======= 53 62 58 46 31 16	106 ST00 +25H02/1 H02/F ====================================	MPILE 7 80 02. 8195 3105 3456 3075 1775 810	KFONS H/SULF 230 162 133 99 56	KTONS 22 18 41 39 28	+22M02 M02/T ===== 79 50 60 67 58 50	/T AU 02. ====== 1706 900 2430 2533 1618 1035	KTONS 53 54 34 31 24 12	+ 22M02 M02/T H02/T H0 40 45 46 46 88 70	/T AU 02. ====== 2124 1539 1408 1118 1030 1008	: KTONS : ====== 75 : 52 : 71 : 62 : 40 : 35	+22H0Z/ H0Z/T A 51 47 54 59 67 58	T IU 02. ======= 3830 2439 3838 3650 2648 2043	MINED KTONS EEEEEEE 305 214 204 161 96	STRIP RATIO 3.08 3.10 1.87 1.59 1.42 0.74
AREA Bench :: -20M 5360 :20M 5340 :20M 5320 :20M 5320 :20M 5260 :20M 5260 :20M 5260 :-	SULF KTONS 53 62 58 46 31 16	106 ST00 +25H02/1 H02/1 ======== 79 50 60 67 58 50 47	MPILE FOUND 02. HIPS HIPS HIPS HIPS HIPS HIPS HIPS	KFONS H/SULF 230 162 133 99 56 26	KTOMS 22 18 41 30 28 21	+22M02 M02/T 79 50 60 67 58 50 47	/T 80 02. ======= 1706 900 2430 2533 1618	: KTONS 	+ 22M02 M02/T H02/T 40 45 46 46 89 70 50	/T AU 02. ====== 2124 1539 1408 1118 1030 1008 495	: KTONS : ====== : 75 : 52 : 71 : 62 : 40 : 35 : 14	+22H0Z/ H0Z/T FF 51 47 54 59 67 58 49	T IU 02. ======= 3830 2439 3850 3650 2648 2043 707	HINED KTONS 214 204 161 96 61	STRIP RATIO 3.08 3.10 1.87 1.59 1.42 0.74 0.25
AREA Bench :: 20M 5360 :: 20M 5340 :: 20M 5320 :: 20M 5300 :: 20M 5280 ::	SULF KTONS ====================================	106 ST00 +25H02/1 H02/F F0 50 60 67 58 50 47	MPILE AU 02. 4195 3105 3456 3075 1775 810 85	KFONS H/SULF 250 162 135 99 56 26 4	KTONS 22 18 41 39 28 21 5	+22M02 M02/T ====== 79 50 60 67 58 50 47 ======	/T AU 02. ====== 1706 900 2430 2533 1618 1035 212 ======= 10434	: KTONS 	+22M02 M02/T ====== 40 45 46 46 88 70 50 ======	/T AU 02. ====== 2124 1539 1408 1118 1030 1008 495 =======	: KTONS : ====== : 75 : 52 : 71 : 62 : 40 : 35 : 14	+22H0Z/T AF	T IU 02. 3830 2439 3830 3650 2648 2043 707	HINED KTONS 214 204 161 96 61	STRIP RATIO 3.08 3.10 1.87 1.59 1.42 0.74 0.25
AREA Bench :: -20M 5360 :: -20M 5340 :: -20M 5320 :: -20M 5300 :: -20M 5260 :: -20M 5260 :: -20M 5260 :: -20M 5240 ::	SULF KTONS 53 62 58 46 31 16 2 ======= 267 2 OXIDE SULF	106 ST00 +25H02/1 H02/F F0 50 60 67 58 50 47	CMPILE AU 02. 4195 3105 3456 3075 1775 810 85 116501 ES SUMMAR	KFONS H/SULF 250 162 135 99 56 26 4	KTONS 22 18 41 30 28 21 771	+22M02 M02/T ====== 79 50 60 67 58 50 47 ======	/T AU 02. ======= 1706 900 2430 2533 1618 1035 212 ======== 10434 MARCH 1.	: KTONS : ETTER : 53 : 34 : 31 : 24 : 12 : 14 : 10 : 178 : 178	+22M02 M02/T ====== 40 45 46 46 88 70 50 ======	/T AU 02. ====== 2124 1539 1408 1118 1030 1008 495 ======= 8721	: KTONS : ====== : 75 : 52 : 71 : 62 : 40 : 35 : 14 ====== : 349	+22H0Z/T AF	T NU 0Z. 3830 2439 3838 3650 2648 2043 707 ==================================	HINED KTONS 214 204 161 96 61	STRIP RATIO 3.09 3.10 1.87 1.59 1.42 0.74 0.25 2.03
PAREA Bench ::	SULF KTONS ===================================	10E STOO +25H02/1 H02/1 F02/1 F0 50 60 67 58 50 47 FFEEE/F 61.7 RESERVE 10E STOO +25H02/1	MPILE 4195 3105 3456 3075 1775 810 85 16501 ES SUMMAR	KFONS H/SULF 230 162 133 99 56 26 4 122 123 710	KTONS 22 18 41 39 28 21 5 5 171	+22M02 M02/T 79 50 60 67 58 50 47 **********************************	/T AU 02. ======= 1706 900 2430 2533 1618 1035 212 ======== 10434 MARCH 1. RE /T AU 02.	: KTONS : EUEEEEE : 53 34 : 34 : 12 : 14 : 10 : 178 : 178 : 1992 MODE	+22M02 M02/T +40 +45 +6 +80 70 50 50 48.9 (L 91-S (I XEO 0 +22M02 M02/T	/T AU 02. ====== 2124 1408 1408 1118 1030 1008 495 ======= 8721 1 ME /T AU 02.	: KTONS : ETTER : 75 : 52 : 71 : 62 : 40 : 35 : 14 ======: : 349 : TOTA	+22H0Z/T AF	T NU 0Z. 3830 2439 3838 3650 2648 2043 707 39155	HINED KTONS EXTENS 2005 214 204 161 96 61 18 18 1059 1059 TOTAL HINED KTONS KTONS	STRIP RATIO 3.08 3.10 1.87 1.59 1.42 0.74 0.25 2.03
PAREA Bench ::	SULF KTONS ===================================	10E STOO +25H02/1 H02/1 F02/2 50 60 67 58 50 47 FEEEE/1 10E STOO +25H02/1	MPILE 7 80 02. 8195 3105 3456 3075 1775 810 85 816501 ES SUMMAR	KFONS H/SULF	KTONS 22 18 41 39 28 21 5 5 171	+22M02 M02/T 79 50 60 67 58 50 47 **********************************	/T AU 02. ======= 1706 900 2430 2533 1618 1035 212 ======== 10434 MARCH 1. RE	: KTONS : EUEEEEE : 53 34 : 34 : 12 : 14 : 10 : 178 : 178 : 1992 MODE	+22M02 M02/T +40 +45 +6 +80 70 50 50 48.9 (L 91-S (I XEO 0 +22M02 M02/T	/T AU 02. ====== 2124 1539 1408 1118 1030 1008 495 ====== 8721	: KTONS : ETTER : 75 : 52 : 71 : 62 : 40 : 35 : 14 ======: : 349 : TOTA	+22H0Z/T AF	T IU 0Z. 3930 2439 3838 3650 2648 2043 707 ======= 19155	HINED KTONS HELESS 204 161 96 61 1059 TOTAL HINED KTONS	STRIP RATIO 3.08 3.10 1.87 1.59 1.42 0.74 0.25 2.03
PAREA Bench :: P20M 5360 :: P20M 5340 :: P20M 5380 :: P20M 5280 :: P20M 5280 :: P20M 5240 :: PHASE 18: PHASE 18: P1 ALL :: P25UN ALL ::	SULF KTONS 53 62 58 46 31 16 2 267 2 OXI DE KTONS 54 97	106 STOO +25H02/1 H02/F 50 60 67 58 50 47 H02/F H02/F H02/F H02/F	CMPILE AU 02. 4195 3105 3456 3075 1775 810 85 16501 ES SUMMAR CMPILE AU 02.	KTONS	KTONS 22 18 41 30 28 21 5 171 CO KTONS 108 03	+22M02 M02/T 79 50 60 67 58 50 47 51 61.0 AS OF 0x106 0 +22M02 H02/T 125 50	/T AU 02. ======= 1706 900 2430 2533 1618 1035 212 ======== 10434 MARCH 1. RE /T AU 02. ====================================	: KTONS : 53 : 53 : 34 : 31 : 24 : 12 : 14 : 10 : 178 : 178 : 1992 MODE	+22M02 M02/T 40 45 46 46 88 70 50 50 50 61 91-5 GIXED 0 +22M02 M02/T 55 50	/T AU 02. ====== 2124 1539 1408 1118 1030 1008 495 ======= 8721 KE /T AU 02. ====== 3718 1526	: KTONS : ====== : 75 : 52 : 71 : 62 : 40 : 35 : 14 ====== : 349 : TOTA : KTONS : ====== : KTONS : ======	+22H0Z/T AFFE AFFE AFFE AFFE AFFE AFFE AFFE AFF	T IU 02. 3830 2439 3838 3650 2648 2043 707 ======== 19155 C+MIXEO T IU 02. ====================================	HINED KTONS 214 204 161 96 61 1059 TOTAL HINED KTONS EEEEEEE 295	STRIP RATIO 3.08 3.10 1.87 1.59 1.42 0.74 0.25 2.03 LEVEL STRIP RATIO 1.35 1.60
P1 ALL	SULF KTONS 53 62 58 46 31 16 2 567 2 OXIDE KTONS 500F KTONS 507 267	10E STOO +25H02/1 H02/1 F02/2 50 60 67 58 50 47 FEEERVE 10E STOO +25H02/1 H02/T	MPILE 7 80 02. 8195 3105 3456 3075 1775 810 85 816501 ES SUMMAR CMPILE 7 40 02. 81440 4784 16501	KFONS H/SULF 230 162 133 99 56 26 4	KTONS 22 18 41 38 28 21 5 171 CO KTONS	+22M02 H02/T 79 50 60 67 58 50 61.0 AS OF 0*122M02 H02/T 42 50 61	/T AU 02. ======= 1706 900 2430 2533 1618 1035 212 ======== 10434 MARCH 1. RE /T AU 02. ========= 4587 4144 10434	: KTONS : 53 : 54 : 31 : 24 : 12 : 14 : 10 : 178 : 178 : 1992 MODE	+22M02 M02/T 40 45 46 46 88 70 50 48.9 CL 91-5 GIXED 0 +22M02 M02/T 50 49	/T AU 02. ======= 2124 1539 1408 1118 1030 1008 495 ======= 8721 KE /T AU 02. ====================================	: KTONS : ====== : 75 : 52 : 71 : 62 : 40 : 35 : 14 : 349 : TOTA : KTONS : ===== : KTONS : ===== : 214 : 113 : 349	+22H0Z/T H0Z/T H7 51 47 59 67 58 49 54.9 61 0XI 0E +22H0Z/T H0Z/T	T (U 02	HINED KTONS 204 204 161 96 61 13 1059 TOTAL HINED KTONS 295 1059	STRIP RATIO 3.08 3.107 1.59 1.42 0.74 0.25 2.03 LEVEL STRIP RATIO 2.03

/

With Bill Mother

DATE:

APRIL 7, 1992

TO:

JIM BARRON

FROM:

VICTOR MILLER/BILL MOTHS

SUBJECT:

MONTHLY REPORT - MARCH, 1992

Mining

March total mined production was 227,628 tons compared to a budgeted 335,000 tons (down 32%). This was due to problems with neutralizing Cell 1 which resulted in the crusher being shut down for most of the month. Most of the 31,400 ore tons mined went into the ROM stockpile. By starting a second 15-foot lift on Cell 7 and half of Cell 6, it was possible to load 43,656 tons toward the end of the month.

Stockpile volumes at the end of the month were:

	TONS	GRADE
Ruby Stockpile	41,822	0.059 opt
Crusher Stockpile	41,650	0.043 opt
ROM Stockpile	11,486	0.087 opt
Sulfide Stockpile	409,400	0.052 opt

A detailed schedule was created for the remaining permitted ore. This included reestimating several levels based on nearby blast hole data. The resulting schedule shows that even with the extra waste mined in March, the April mined ore production will only be around 83,000 tons. This was due in part because a significant amount of mining capacity has to be diverted to cell offloading and loading and in part to a shortfall in ore on the 5360 level in the Sunday pit.

Engineering

Remaining Reserves and Schedule - This was discussed in the mining section above. Using the blast hole assays on the bench above, the remaining reserves as of March 1 were reestimated to be 557,000 tons at a 0.053 opt grade. This was down from previous estimates. With March mining, the remaining reserves as of April 1 are 525,600 tons at a 0.053 opt grade. This schedule is attached to this report.

<u>Dump Design</u> - With the limited amount of waste rock and spent ore to be placed in the waste dumps, it is critical that the placement of these materials be optimized for the planned pad expansion over the dumps. There may not be enough material remaining to facilitate some of the design criteria for the pad expansion and a review of the resulting problems is needed.

<u>Personnel</u> - Mike Golliher resigned and his last day at work was March 20. Bill Moths was promoted to Production Coordinator and will assume most of Mike's duties. John Roggenbuck was promoted to Surveyor, and will be spending most of his time doing survey work for Bill. Also, Bob Fox will be assisting Bill in supervising the contractor and was promoted to Engineering Assistant.

/rl

c: Rod MacLeod Jim Thompson Myron Andersen

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET MARCH, 1992

	MARCH			·····YEAR TO DATE·····		
DESCRIPTION	1992 Budget*	Actual	Variance	1992 Budget	Actual	Variance
Ore Mined (tons)	115,000	31,400	(83,600)	345,000	214,134	(130,866)
Waste Mined (tons)	220,000	196,228	(23,772)	660,000	727,774	67,774
Total Mined (tons)	335,000	227,628	(107,372)	1,005,000	941,908	(63,092)
Grade Ore Mined (oz/ton Au)	0.044	0.041	0.003	0.045	0.057	0.010
Ore Crushed (tons)	115,000	12,934	(102,066)	345,000	216,115	(128,885)
Grade Ore Crushed (oz/ton Au)	0.040	0.085	0.045	0.041	0.062	0.021
Ore to Pads (tons)	115,000	43,656.0	(71,344)	377,000	229,907	(147,093)
Spent Ore From Pads (tons)	115,000	0	(115,000)	377,000	190,488	(186,512)
Metal Produced (oz):						
Αυ	2,740	1,973.04	(766.96)	8,720	7,715.20	(1,004.80)
Ag	2,000	3,657.64	1,657.64	6,000	11,176.63	5,176.63

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR MARCH 1992

DESCRIPTION	UNITS ARE TON MONTH TO DATE	YEAR	PROJECT TO DATE
SUNDAY PIT ORE	29946	90374	3093188
SUNDAY PIT WASTE	180728	501892	5603741
TOTAL SUNDAY PIT	210674	592266	8696929
DAKOTA PIT ORE	1454	123760	973340
DAKOTA PIT WASTE	15500	225882	2632258
TOTAL DAKOTA MAID	16954	349642	3605598
TOTAL ORE MINED	31400	214134	4066528
TOTAL WASTE MINED	196228	727774	8235999
TOTAL MINED	227628	941908	12302527
GRADE ORE MINED	AU	AU	AU
SUNDAY PIT ORE	0.041	0.042	0.043
DAKOTA PIT ORE	0.031	0.067	0.049
TOTAL ORE MINED	0.041	0.056	0.044

ASSUME: 2 TONS/BCY

ASSUME: 26.0 BCY/TRUCK

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

Date	TONS	A.A. Au opt	A.A. ounces	Fire Au opt	Fire ounces	
03/25/92 03/30/92 03/31/92	1448.8 5307.7 6177.9	0.033	65.196 175.154 240.938	0.111	97.070 589.155 413.919	
TOTAL	12934.4	0.037	481.288	0.085	1100.144	

PROPOSED 1992 PRODUCTION SCHEDULE SCHEDULE 3/27/32, 91-T1 MODEL MODIFIED FOR BLAST HOLE DATA

?BR100					PORS	ORB OZ/FON	0 2	03/27/92 TOTAL MINBO			PAD OFF TORS
								97,000			
	5360	S	ii	81,000 124,000	10,000	0.044	441	134,000	12.4		
	5340	DK		30,000	8,000	0.055	442	38,900	3.8		
	MAR	POTAL	11	235,000	34,000	0.046	1,555	269,000	6.9	45,000	
APRL. '92	5360	S	П	109,000	22.000	0.044	977	1 131.000	5.0		
	5340	DK2	Ϊİ	48,000	35,000	0.055	1936	83,000	1.4		
	5320	DM1	П	57,000	26,000	0.037	972	33,000	2.2		
		POPAL		214,000]	83,000	0.047	3,885	297,000	2.6	137,000	200,000
usu ton	F 3 C A	c		24 000 1	۸		А	1 24 000	Α Α		
KAY '92	5360	o c	11	24,000 164,000	70 000	0.000 0.050	3066	1 24,000	0.0		
	3320		11	42,000	41,000 	. 0.033					
	HAY	TOTAL	11	230,000	120,000	0.052	6,221	350,000	1.9	120,000	70,000
JUNE '92	5340	s	11	25,000	28,300	3.350	1496	1 53.000	0.9		
	5320	S	ii	88,000	42.000	9.055	2302	1 130.000	2.1		
	5300	DKI	Ιij	15,000	15.000	0.337	592	31,300	0.9		
				32,000							
	JONE	TOTAL		160,000	120,900	0.051	6,169	286,000		120,000	65,000
JULY '92	5320	s	11	46,000	28 000	0 055	1534	1 74 808	1.6		
0001 72	5300	S		102,000	59 000	0.053	1198	1 161 000	1.7		
	5280	S	Н	3,000	5.000	0.056	328	1 8.000	0.6		
				9,000							
	JUL7	POTAL		160,000	120,000	0.058	6,940	280,000		120,000	0
AUG. 192				51,000							
	5260	S	11	30,000		0.054		•	1.0		
	5240	S	11	4,000	14,009	0.049	532	18,000	0.3		
	AUG	TOTAL	11	85,000	80,000	0.058	4,658	165,000	1.1	80,000	0
				PROPOSED 1991	2 PRODUCTI	ON SCHE	DULE				
	Š	CHEDUi	3	3/27/92, 31-71	NODEL KOD	IPIBD PO	OR BLAST	HOLE DATA 03/27/92			
			11	WASTE		028		FOTAL		PAD OR	PAD OPP
	RORFE			PONS		02/708		DERIN		FORS	PONS
								•		:::::::::	
	MAR		Π		34,800			269,900		45,000	
	APRL		11	214,000	33,000	0.0468	3,885	297,000 350,000	2.6	137,000	
	HAT		\prod	230,000	120,000	0.0513	5,221	350,000	1.9	120,000	
	JONB		Ш	160,000	120,000	0.0514	6,169	280,000	1.3	120,000	
	JULY		!!	· ·	120,000	0.0578	6,940	280,000	1.3	120,000	0
	AUG		11	85,000	30,000	0.0582	4,658	165,000	1.1	80,000	0
		TOTAL		1,034,300	557,000	0.0528	29,428	1,641,000	1.3	522,000	335,000

MONTHLY REPORT

Vii Miller

DATE:

MAY 7, 1992

TO:

JIM BARRON

FROM:

VICTOR MILLER/BILL MOTHS

SUBJECT:

MONTHLY REPORT - APRIL, 1992

Mining

April total mined production was 310,712 tons compared to a budgeted 390,000 tons. Total tons moved including on and off pad was 609,288 tons, which was 60,712 tons less than the budgeted 670,000 tons.

In the Dakota Maid pit the 5340 bench was completed and a drop cut to the 5320 bench began. Here a total of 34,134 tons of ore (@.047 opt grade) was mined along with 73,390 tons of waste rock (including sulfide stockpile). The drop cut to the 5320 will drop just below the water table and was the major haulage level for old underground workings. Mining from this point on will present unique challenges in the Dakota Maid.

In the Sunday Pit, 23,882 ore tons (.038 opt) and 149,734 waste tons were mined. The 5360 bench is nearly complete and the first shot for the drop cut to the 5340 was made. When the 5360 bench is complete the Phase II pit design will have caught up to the Phase I pit.

The mining force account bill be over budget this month due to a \$14,696.00 wet blast hole charge. Last month the wet hole charge was \$9,350.00. As mining progresses below the water table this charge will increase.

The production schedule in last months report is still valid. There will continue to be problems in predicting the highly variable oxide-sulfide boundaries. Added to this will be the extent of underground working and related wood contamination. The amount of water inflow in the Dakota Maid pit could also interrupt the schedule.

Pad tonnage included off-loading Cells 1, 2 and part of 3, and loading Cells 1 and 2. The following material was moved:

PAD LOADING APRIL 1992						
<u>Cell</u>	<u>Tons</u>	<u>Au</u>	<u>Ag</u>	Au Ounces	Ag Ounces	
61-1	62.072.3	0.057	0.217	3562.5	13,443.9	
62-2	69,439.9	0.058	0.245	4058.5	17,004.5	

PAD OFF-LOADING APRIL 1992			
<u>Cell</u>	<u>Tons</u>		
53-1	71,548		
54-2	68,892		
55-3	26,624		

The Cell 61-1 loading tonnage includes 7,300 tons of unleached side slope material that was not off-loaded. Cell 2 also had 6,400 tons of unleached ore left on it.

Stockpile volumes at the end of the month were:

<u>Area</u>	<u>Tons</u>	<u>Grade</u>		
Ruby Crushed Ore ¹				
Crusher Stacker	3,120	0.043		
Run-of-Mine Crusher Feed	28,150	0.049		
Sulfide	452,000	0.051		
¹ This stockpile was closed out and should not be used again				

Engineering

Dump Plan - The dumping plan for the final spent ore, waste rock and sulfide stockpile was finalized. A 40 foot high lift of spent ore will be placed 100-200 feet behind the waste rock crest so the spent ore can be dozed into the final 2 1/2:1 reclaimed slope. The material will also be placed to minimize material movement if a leach pad is placed over it.

Sulfide Stockpile AA vs Fire Assay - Previously the shake cyanide AA assay was viewed as an indicator of what may be leached on the pad. Thus the gold detected in the fire assay but not in the AA assay could not be leached. A review of sulfide ore stockpiled from the just complete 5360 bench showed that the average AA assay was only 44% of the fire assay.

changed but the bias would make the real fire grade higher and the percent difference lower while the AA grade was unchanged.

The primary theory for the cause is a secondary chalcacite blanket near the oxide/sulfide interface. The high copper could be blinding the cyanide to the gold plus consuming cyanide.

Bottle roll and column tests are planned to determine the relationship of AA and fire assays to recovery and the copper to cyanide consumption.

Pad Dumping Plan - A heap stacking plan was developed which will maximize the ore tonnage that could be put on the pad without expanding it to the east. With this plan 635,000 tons of currently permitted oxide and mixed ore would be placed on the northern half of the pad, and 757,000 tons of sulfide ore from the stockpile would be placed on the south half of the pad. The following design criteria was used:

- * Pad dike face would be reclaimed as currently permitted to avoid added bonding.
- * Sulfide spent ore would be reclaimed back to a 3.0:1 slope.
- No additional surge ponds would be built and the permitted water balance would be unaffected.
- * A 60 wide HDPE reclamation pad would be added to the east side of the existing pad so the reclaimed sulfide portion of the heap could be dozed to 3.0:1 slope.
- A conveyor/stacker system would be available to reach the design height.

<u>Remaining Reserves</u> - The amount of remaining ore in the Sunday and Dakota Maid Pits is difficult to predict for the following reasons:

- * The lost reserves are along the oxide/sulfide boundary which is highly erratic.
- * A lot of underground mining was done.
- * How far the mine will be able to drop below the water table is uncertain.

At the month end the estimated remaining input reserves are 440,000 tons at 0.054 opt. There was also 28,150 tons at 0.049 opt in the run-of-mine stockpile feeding the crusher.

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET APRIL, 1992

	MARCH				YEAR TO DATE	••••
DESCRIPTION	1992 Budget*	Actual	Variance	1992 Budget	Actual	Variance
Ore Mined (tons)	120,000	60,496	(59,504)	465,000	274,360	(190,370)
Waste Mined (tons	270,000	250,216	(19,784)	930,000	977,990	47,990
Total Mined (tons)	390,000	310,712	(79,288)	1,395,000	1,252,620	(142,380)
Grade Ore Mined (oz/ton Au)	0.047	0.046	0.001	0.046	0.054	0.009
Ore Crushed (tons)	120,000	99,031	(20,969)	465,000	315,146	(149,854)
Grade Ore Crushed (oz/ton Au)	0.044	0.054	0.010	0.042	0.059	0.017
Ore to Pads (tons)	120,000	131,512.0	(11,512)	497,000	361,419	(135,581)
Spent Ore From Pads (tons)	120,000	167,064	(47,064)	497,000	357,552	(139,448)
Metal Produced (oz):						
Au	2,910	2,324.80	(585.20)	11,630.0	10,040.0	(1,590.00)
Ag	2,000	3,234.42	1,234.42	8,000	14,411.05	6,411.05

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR

4/30/92

i

UNITS ARE TONS

DESCRIPTION	MONTH TO DATE	YEAR TO DATE	PROJECT TO DATE
SUNDAY PIT ORE	23882	114256	3117070
SUNDAY PIT WASTE	149734	651626	5753475
TOTAL SUNDAY PIT	173616	765882	8870545
DAKOTA PIT ORE	36614	160374	1009954
DAKOTA PIT WASTE	100482	326364	2732740
TOTAL DAKOTA MAID	137096	486738	3742694
TOTAL ORE MINED	60496	274630	4127024
TOTAL WASTE MINED	250216	977990	8486215
TOTAL MINED	310712	1252620	12613239
GRADE ORE MINED	AU 	AU	AU
SUNDAY PIT ORE	0.038	0.041	0.043
DAKOTA PIT ORE	0.051	0.063	0.049
TOTAL ORE MINED	0.046	0.054	0.044

ASSUME: 2 TONS/BCY

ASSUME: 26.0 BCY/TRUCK

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

	TONS	A.A.	A.A.	Fire	Fire
Date	 	Au opt	ounces	Au opt	ounces
04/01/92	5897.4	0.039	229.999	0.060	353.844
04/02/92	6676.0	0.028	186.928	0.034	226.984
04/03/92	7194.4	0.036	258.998	0.044	316.554
04/06/92	7302.0	0.046	335.892	0.061	445.422
04/07/92	5334.0	0.059	314.706	0.076	405.384
04/08/92	5080.3	0.076	386.103	0.097	492.789
04/09/92	4399.0	0.058	255.142	0.072	316.728
04/10/92	4080.0	0.060	244.800	0.068	277.440
04/13/92	6168.1	0.026	160.371	0.044	271.396
04/14/92	6360.1	0.032	203.523	0.037	235.324
04/15/92	5732.0	0.029	166.228	0.075	429.900
04/16/92	5163.2	0.034	175.549	0.037	191.038
04/20/92	1151.1	0.035	40.289	0.044	50.648
04/21/92	3510.2	0.033	115.837	0.052	182.530
04/22/92	4107.1	0.026	106.785	0.041	168.391
04/23/92	3919.4	0.037	145.018	0.081	317.471
04/24/92	3389.7	0.026	88.132	0.031	105.081
04/27/92	556.7	0.041	22.825	0.049	27.278
04/28/92	719.2	0.069	49.625	0.119	85.585
04/29/92	4384.0	0.039	170.976	0.047	206.048
04/30/92	7907.0	0.022	173.954	0.027	213.489
TOTAL	99030.9	0.039	3831.680	0.054	5319.324

MONTHLY REPORT

Vii Miller

DATE:

MAY 7, 1992

TO:

JIM BARRON

FROM:

VICTOR MILLER/BILL MOTHS

SUBJECT:

MONTHLY REPORT - APRIL, 1992

Mining

April total mined production was 310,712 tons compared to a budgeted 390,000 tons. Total tons moved including on and off pad was 609,288 tons, which was 60,712 tons less than the budgeted 670,000 tons.

In the Dakota Maid pit the 5340 bench was completed and a drop cut to the 5320 bench began. Here a total of 34,134 tons of ore (@.047 opt grade) was mined along with 73,390 tons of waste rock (including sulfide stockpile). The drop cut to the 5320 will drop just below the water table and was the major haulage level for old underground workings. Mining from this point on will present unique challenges in the Dakota Maid.

In the Sunday Pit, 23,882 ore tons (.038 opt) and 149,734 waste tons were mined. The 5360 bench is nearly complete and the first shot for the drop cut to the 5340 was made. When the 5360 bench is complete the Phase II pit design will have caught up to the Phase I pit.

The mining force account bill be over budget this month due to a \$14,696.00 wet blast hole charge. Last month the wet hole charge was \$9,350.00. As mining progresses below the water table this charge will increase.

The production schedule in last months report is still valid. There will continue to be problems in predicting the highly variable oxide-sulfide boundaries. Added to this will be the extent of underground working and related wood contamination. The amount of water inflow in the Dakota Maid pit could also interrupt the schedule.

Pad tonnage included off-loading Cells 1, 2 and part of 3, and loading Cells 1 and 2. The following material was moved:

PAD LOADING APRIL 1992						
Cell	<u>Tons</u>	<u>Au</u>	<u>Ag</u>	Au Ounces	Ag Ounces	
61-1	62.072.3	0.057	0.217	3562.5	13,443.9	
62-2	69,439.9	0.058	0.245	4058.5	17,004.5	

PAD OFF-LOADING APRIL 1992			
<u>Cell</u>	<u>Tons</u>		
53-1	71,548		
54-2	68,892		
55-3	26,624		

The Cell 61-1 loading tonnage includes 7,300 tons of unleached side slope material that was not off-loaded. Cell 2 also had 6,400 tons of unleached ore left on it.

Stockpile volumes at the end of the month were:

<u>Area</u>	<u>Tons</u>	<u>Grade</u>		
Ruby Crushed Ore ¹				
Crusher Stacker	3,120	0.043		
Run-of-Mine Crusher Feed	28,150	0.049		
Sulfide	452,000	0.051		
¹ This stockpile was closed out and should not be used again				

Engineering

Dump Plan - The dumping plan for the final spent ore, waste rock and sulfide stockpile was finalized. A 40 foot high lift of spent ore will be placed 100-200 feet behind the waste rock crest so the spent ore can be dozed into the final 2 1/2:1 reclaimed slope. The material will also be placed to minimize material movement if a leach pad is placed over it.

Sulfide Stockpile AA vs Fire Assay - Previously the shake cyanide AA assay was viewed as an indicator of what may be leached on the pad. Thus the gold detected in the fire assay but not in the AA assay could not be leached. A review of sulfide ore stockpiled from the just complete 5360 bench showed that the average AA assay was only 44% of the fire assay.

changed but the bias would make the real fire grade higher and the percent difference lower while the AA grade was unchanged.

The primary theory for the cause is a secondary chalcacite blanket near the oxide/sulfide interface. The high copper could be blinding the cyanide to the gold plus consuming cyanide.

Bottle roll and column tests are planned to determine the relationship of AA and fire assays to recovery and the copper to cyanide consumption.

Pad Dumping Plan - A heap stacking plan was developed which will maximize the ore tonnage that could be put on the pad without expanding it to the east. With this plan 635,000 tons of currently permitted oxide and mixed ore would be placed on the northern half of the pad, and 757,000 tons of sulfide ore from the stockpile would be placed on the south half of the pad. The following design criteria was used:

- * Pad dike face would be reclaimed as currently permitted to avoid added bonding.
- * Sulfide spent ore would be reclaimed back to a 3.0:1 slope.
- * No additional surge ponds would be built and the permitted water balance would be unaffected.
- * A 60 wide HDPE reclamation pad would be added to the east side of the existing pad so the reclaimed sulfide portion of the heap could be dozed to 3.0:1 slope.
- * A conveyor/stacker system would be available to reach the design height.

<u>Remaining Reserves</u> - The amount of remaining ore in the Sunday and Dakota Maid Pits is difficult to predict for the following reasons:

- * The lost reserves are along the oxide/sulfide boundary which is highly erratic.
- * A lot of underground mining was done.
- * How far the mine will be able to drop below the water table is uncertain.

At the month end the estimated remaining input reserves are 440,000 tons at 0.054 opt. There was also 28,150 tons at 0.049 opt in the run-of-mine stockpile feeding the crusher.

At the month end the estimated remaining input reserves are 440,000 tons at 0.054 opt. There was also 28,150 tons at 0.049 opt in the run-of-mine stockpile feeding the crusher.

/vc

c: Rod MacLeod Jim Thompson Myron Andersen

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET APRIL, 1992

	MARCH			•	EAR TO DATE	
DESCRIPTION	1992 Budget*	Actual	Variance	1992 Budget	Actual	Variance
Ore Mined (tons)	120,000	60,496	(59,504)	465,000	274,360	(190,370)
Waste Mined (tons	270,000	250,216	(19,784)	930,000	977,990	47,990
Total Mined (tons)	390,000	310,712	(79,288)	1,395,000	1,252,620	(142,380)
Grade Ore Mined (oz/ton Au)	0.047	0.046	0.001	0.046	0.054	0.009
Ore Crushed (tons)	120,000	99,031	(20,969)	465,000	315,146	(149,854)
Grade Ore Crushed (oz/ton Au)	0.044	0.054	0.010	0.042	0.059	0.017
Ore to Pads (tons)	120,000	131,512.0	(11,512)	497,000	361,419	(135,581)
Spent Ore From Pads (tons)	120,000	167,064	(47,064)	497,000	357,552	(139,448)
Metal Produced (oz):						
Au	2,910	2,324.80	(585.20)	11,630.0	10,040.0	(1,590.00)
Ag	2,000	3,234.42	1,234.42	8,000	14,411.05	6,411.05

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR

4/30/92

UNITS ARE TONS

DESCRIPTION	MONTH TO DATE	YEAR TO DATE	PROJECT TO DATE
SUNDAY PIT ORE	23882	114256	3117070
SUNDAY PIT WASTE	149734	651626	5753475
TOTAL SUNDAY PIT	173616	765882	8870545
DAKOTA PIT ORE	36614	160374	1009954
DAKOTA PIT WASTE	100482	326364	2732740
TOTAL DAKOTA MAID	137096	486738	3742694
TOTAL ORE MINED	60496	274630	4127024
TOTAL WASTE MINED	250216	977990	8486215
TOTAL MINED	310712	1252620	12613239
GRADE ORE MINED	AU	AU	AU
SUNDAY PIT ORE	0.038	0.041	0.043
DAKOTA PIT ORE	0.051	0.063	0.049
TOTAL ORE MINED	0.046	0.054	0.044

ASSUME: 2 TONS/BCY

ASSUME: 26.0 BCY/TRUCK

AVERAGE DAILY CRUSHER HEAD NACN SHAKE VS FIRE

1	TONS	A.A.	A.A.	Fire	Fire
Date	ĺ	Au opt	ounces	Au opt	ounces
04/01/92	5897.4	0.039	229.999	0.060	353.844
04/02/92	6676.0	0.028	186.928	0.034	226.984
04/03/92	7194.4	0.036	258.998	0.044	316.554
04/06/92	7302.0	0.046	335.892	0.061	445.422
04/07/92	5334.0	0.059	314.706	0.076	405.384
04/08/92	5080.3	0.076	386.103	0.097	492.789
04/09/92	4399.0	0.058	255.142	0.072	316.728
04/10/92	4080.0	0.060	244.800	0.068	277.440
04/13/92	6168.1	0.026	160.371	0.044	271.396
04/14/92	6360.1	0.032	203.523	0.037	235.324
04/15/92	5732.0	0.029	166.228	0.075	429.900
04/16/92	5163.2	0.034	175.549	0.037	191.038
04/20/92	1151.1	0.035	40.289	0.044	50.648
04/21/92	3510.2	0.033	115.837	0.052	182.530
04/22/92	4107.1	0.026	106.785	0.041	168.391
04/23/92	3919.4	0.037	145.018	0.081	317.471
04/24/92	3389.7	0.026	88.132	0.031	105.081
04/27/92	556.7 j	0.041	22.825	0.049	27.278
04/28/92	719.2	0.069	49.625	0.119	85.585
04/29/92	4384.0	0.039	170.976	0.047	206.048
04/30/92	7907.0	0.022	173.954	0.027	213.489
				j	
TOTAL	99030.9	0.039	3831.680	0.054	5319.324

MONTHLY REPORT

Vi Miller

DATE:

JUNE 5, 1992

TO:

JIM BARRON

FROM:

VICTOR MILLER

SUBJECT:

MONTHLY REPORT - MAY, 1992

Mining

Total material moved for the month was 495,295 tons compared to a budg eted 460,000 tons. Distribution of this production was as follows:

	BUDGET	ACTUAL	VARIENCE
ORE	100,000	82,326	(17,674)
WASTE	190,000	214,254	24,254
TOTAL MINED	290,000	296,578	6,578
ON PAD	100,000	95,798	(4,202)
OFF PAD	70,000	102,919	32,919

The shot fall of ore production was caused by projected oxide/mixed ore on the Dakota Maid 5320 bench that turned out to be sulfide. From this area a total of 35,700 tons of are at 0.056 opt was mined along with 127,965 tons of waste. The reconciliation for the total Dakota Maid 5320 bench showed the model projected 76,800 tons of ore, while only 42,900 tons were realized.

In the Sunday Pit, production was mainly from the 5340 bench. In this pit 35,750 tons of ore was mined and 86,288 tons of waste.

Pad off-loading consisted of 37,715 tons from Cell #3 and 65,204 from Cell #4. On the southside of Cell #4, adjacent to Cell #5, 8,120 tons was left and will be off-loaded when Cell #5 passes.

Pad #3 and half of Pad #4 was loaded. Blattner was paid for moving 62,750 tons onto Cell #4. In addition to this was 1,092 tons moved onto Cell #4 that was charged to force account, and 5,825 tons of unleached ore from the previous pad left on the cells west end. On Cell #4, Blattner was paid for moving 33,048 tons. In addition to this was 1,569 tons of unleached ore from the previous heap left on the west end, and 6,380 tons of ore that overlapped onto Cell #4 from Cell #3.

PAD LOADING APRIL 1992						
<u>Cell</u>	<u>Tons</u>	Au (Fire)	<u>Ag</u>	Au Ounces	Ag Ounces	
63-3 64-4	69,667 45,482	0.0511 0.0578	0.1917 0.2212	3,560 2,630 6,190	13,360 10,060 23,420	
TOTAL	115,149	0.0538	0.2034			

Included in the 214,254 waste tons mined was 63,000 tons of sulfide ore grade material that was placed in the sulphide stockpile.

Stockpile tonnage at the end of May were:

<u>Area</u>	Tons	<u>Grade</u>
Crushed ore, stacker	13,460	0.054
Run-of-Mine Crusher Feed	4,150	0.043
Sulfide	515,000	0.051

Engineering

A pit was designed to mine a small ore pod that was left between the Sunday Pit and the crusher. Added reserves for this extension was 101,000 tons of ore at a 0.038 opt., along with 212,000 tons of waste rock (2.1:1 strip ratio). Since this area was inside the presently permitted pit limits, the state has given permission for the change.

A pit was designed to mine the reserves in the Southeast Langly area. Reserves here were 141,000 ore tons at a 0.0385 opt and containing 3801 gold ounces. To exextract this ore 554,000 tons of waste rock with a 3.9:1 strip ratio has to be removed. This area lies outside all permit boundries so a permit ammendment will be required. Due to the steepness of the south Langly hillside the pit will be difficult to access and the uppermost 5 benches will have to be dozed down to where the closest haul rand can be constructed.

Engineering drawing were made showing the reclaimed 120 foot height leach pad topography. Also, reclimation dozing costs were calculated for reducing the leach pad to 2 1/2:1 slopes for various pad heights.

Remaining Reserves - Attached are the remaining level by level reserves as of June 1, 1992. The model estimates that of the 411,000 tons of oxide and mixed ores, 241,000 tons will be "mixed" and 170,000 tons will be oxide.

The 220,000 tons of sulfide ore was estimated using a model cut-off of 0.025 oz/t and no tonnage correction. There is currently no data on how much copper it will take to make the sulfide ore uneconomic to leach. Of the estimated sulfide tonnage, as much as 100,000 tons could have more copper than desirable.

Miscealnous -

- * Bill Moths submitted his resignation effective June 12, 1992. He will be missed.
- The King Tunnel was intersected by the Dakota Maid 5320 bench.
- Most of the Dakota Maid 5320 bench was mined 1.5 feet high to stay above the water table.
- 1,000 tons of limestone fines were placed below the sullfide ore stockpile to help mitigate potential acid drainage from the stockpile.

/vc

c: Rod MacLeodJim ThompsonMyron Andersen

GILT EDGE MINE MONTHLY STATISTICS COMPARED TO BUDGET MAY, 1992

	MAY			······YEAR TO DATE······		
DESCRIPTION	1992 Budget*	Actual	Variance	1992 Budget	Actual	Variance
Ore Mined (tons)	100,000	82,326	(17.614)	565,000	356,956	(280.044)
Waste Mined (tons	190,000	214,252	24,254	1,120,000	1,192,243	/2,243
Total Mined (tons)	290,000	295,578	(6,578)	1,685,000	1,549,199	(135,801)
Grade Ore Mined (oz/ton Au)	0.050	0.055	0.005	0.046	0.054	0.008
Ore Crushed (tons)	100,000	81,292	(18,708)	565,000	396,438	(149,854)
Grade Ore Crushed (oz/ton Au)	0.050	0.056	0.006	0.042	0.058	0.017
Ore to Pads (tons)	100,000	95,798	(4.202)	597,000	457,217	(139,783)
Spent Ore From Pads (Ions)	70,000	102,919	32.295	567,000	460,471	(106,529)
Metal Produced (oz):						
Au	3,324	2,875.50	2,620.85	14,954.0	12,915.50	(2,038.50)
Ag	2,000	4,620.85	1,234.42	10,000	19,031.90	9,031.9

GILT EDGE MINE

BROHM MINING CORP.

MINE STATISTICS FOR MAY 1992

DESCRIPTION	UNITS ARE TON MONTH TO DATE	YEAR	PROJECT TO DATE
SUNDAY PIT ORE	46576	160832	3163646
SUNDAY PIT WASTE	127965	779590	5881440
TOTAL SUNDAY PIT	174540	940422	9045086
DAKOTA PIT ORE	35750	196124	1045704
DAKOTA PIT WASTE	86288	412652	2819028
TOTAL DAKOTA MAID	122038	608776	3864732
TOTAL ORE MINED	82326	356956	4209350
TOTAL WASTE MINED	214252	1192242	8700468
TOTAL MINED	296578	1549198	12909818
GRADE ORE MINED	A U	AU	AU
SUNDAY PIT ORE	0.055	0.045	0.043
DAKOTA PIT ORE	0.054	0.062	0.050
TOTAL ORE MINED	0.055	0.054	0.045

ASSUME: 2 TONS/BCY

		MAY 1992 PRODUCTION	The second of the			
DATEZELT I	ORE GRADE MASTE		9,520 1	1.1 ORF	LOTAL GRADE	TOTAL HASTE
	2600 0.039 10476		1350 0.040 5350 1	11 2600 11 1950	() ភ្នាក់ក្នុង () ភូមិក្រស់	10476 S 5550 D
05/04/92 51 05/04/92 DI		1	 2200 0.052 4400	11 0	0.092	0 \$ बन्धें 0
	5050		 2646-0.0485776-	11 26.46	0.ប៉ុកាក្	5050 5 5776 0
05/06/92 \$1 05/06/92 01		4750	:	:: 26642	0.046	4750 S 9424 D
05/07/92 \$1 05/07/92 DI		510Ů	1	11 0 11 3996	0.045	5100 S 8910 D
05/08/92 SI 05/08/92 DI		5400 I	1	11 2916	0.061	5400 S 15012 O
05/11/92 St 05/11/92 Dt		1 5900 1	 4266 0.079 13024	11 0 11 4266	0.079	5900 S 13024 D
05/12/92 St 05/12/92 Dt		1 1450 0.026 7020		145% 4414	0.026 0.077	7020 S 11152 D
05/13, 92 St 05/15/92 Ot		1674 0.025 5616 	1	11 1674	0.025 0.040	5616 S 7 33 2 0
05/14/92 St 05/14/92 Ot		6750		11 0	0.066	6750 S 2900 D
05/15/92 St		7344	1 3700 0.035 1150 I		0.055	7544 \$ 1150 D
05/18/92 St 05/18/92 Ot		972 0.035 4156		11 972 11 1690	0.035 0.047	4158 S 050 D
05/19/92 St 05/19/92 Ot		1 2916 0.059 11252	1	2916	0.039	11232 S 0 0
05/200-92-\$1 -05/200-92-01		\$076 0.020 16200		1.1	0.020	16200 S 0 0
05/21/92/51 05/21/92/01		5076 0.155 6264 	1	11 5076	0.195	6264 S 0 D
05/22/92 SI 05/22/92 DI		1 4520 0.057 5564 1	I I	4520	0.055	3564 S 0 D
05/25/92 S1 05/25/92 D1) 4700 0.044 1400 	;	11 4700	0.044	1400 S 0 0
05/27/92 St 05/27/92 D:		1 5150 0.055 2000		5 150 1 11 0	0.058	2000 S U D
05/200 92 \$1 05/28/92 DE		5050 0.047 6372	1 1	5050 11 0		6972 S () ()
05/23/92/51 05/29/92/DI		: 5350 0.079 9744	1		6.070	9744 S 0 D
\$1 01		 	1	1 11 0 1 11 0		0 S 0 D
S (D)		1		0		0 S 0 D
60 30%) \$1 60 30%) D1	-600 0.039 -4106	1 2922 0.056 7731	500 0.055 1206 1	i ii 2234 i ii 500	0.061 0.085	3625 S 1206 D
rotm si	1912 0.059 11420	1 44664 0.056 116545	1 0 0 1 35750 0.05∢ 86286	11 46576	0.056 0.054	
55 m - 5 1 (F4) (F45)					0.0552	214255

REMAIRIRI DRE RESERVES AS 19 JUNE 1, 1991 35, 83, 31 MODEL 91-71 FILE: 2856-92.WEL OTIDE/HITED ORE TOTAL STRIP TASTE | SOLFIDE TO STOCKPILE | TOUS GRADE OURCES TOES RATIO BERCH | TORS | TORS GRADE OURCES | DAKOTA MAID 5300 | 25,000 | 55,000 0.040 2,200 | 32,000 0.059 1,888 | 112,000 DAKOTA MAID 5280 [11,000] 0 | 26,000 0.067 1,742 | 37,000 0 0.000 143,600 0.32 DAKOTA MAID TOTAL | 36,000 | 55,000 0.040 2,200 | 58,000 0.063 3,630 | SURDAY 5340 | 72,000 | 3,000 0.050 400 | 40,000 0.048 1,920 | 120,000 74,000 | 57,000 0.057 3,266 | 73,000 0.053 3,869 | 204,000 SUNDAY 5320 5300 | 58,000 | 45,000 0.055 2,457 | 58,000 0.058 3,364 | SUNDAT 161,000 SUBDAY 5280 | 29,000 | 29,000 0.060 1,752 | 38,000 0.068 2,584 | 96.800 5260 | 10,800 | 20,000 0.854 1,874 | 31,800 0.857 1,767 | 61,000 SUBDAY SUNDAY 5240 5,880 8 8.300 0 | 13,000 0.050 650 13,000 SUMDAY TOTAL | 148,000 | 159,000 0.056 3,949 | 253,000 0.056 14,154 | 880,000 0.60 2,000 CRUSH. BIT. 5540 ! 1,500 0 0.000 500 0.044 22 CRUSH. 817. 5520 | 10,500 | 0 0.000 500 0.050 25 11,000 CRUSH, 817, 5500 | 50,000 | 52,000 1 1.191 2,000 0.090 180 CRUSH. BIT. 5480 | 53,000 | 966.0 5,000 0.037 185 58,000 CRUSH. BIT. 5460 | 46,000 | **4** | 43,800 **4.8**37 1,591 | 39, 200 9 8.888 CRUSH. BIT. 5440 | 38,000 | 224 | 37,000 0.037 1,369 | 51,000 6,000 0.037 IRUSH, BIT, 5420 | 8,000 | 20,000 0.000 0 | 12,000 0.037 444 | IRDSB. BIT. TOTAL | 105,500 | 6,000 0.037 | 224 | 100,000 0.038 3,316 | 313,000 1.34

TOTAL ALL ARRAS | 439,500 | 120,000 0.052 11,373 | 411,000 0.053 21,500 | 1,122,000 0.78

AVERAGE DAILY CRUSHER HEAD NaCN SHAKE VS FIRE

	TONS	A.A.	A.A.	Fire	Fire	
Date		Au opt	ounces	Au opt	ounces	
05.401.400						
05/01/92	•				226.800	
05/04/92	•		96.139	•	113.395	
	2209.4			•	172.333	
	2101.4			•		
05/07/92	2286.1	0.052	118.877	0.061	139.452	
05/08/92	1745.6	0.042	73.315	0.058	101.245	
05/11/92	2165.1	0.054	116.915	0.070	151.557	
05/12/92	1814.3	0.051	92.529	0.058	105.229	
05/13/92	2338.0	0.043	100.534	0.046	107.548	
05/14/92	3702.2	0.043	159.195	0.051	188.812	
05/15/92	5078.3	0.032	162.506	0.045	228.524	
05/18/92	5845.4	0.026	151.980	0.036	210.434	
05/19/92	5095.0	0.030	152.850	0.040	203.800	
05/20/92	3959.4	0.040	158.376	0.063	249.442	
05/21/92	4440.6	0.073	324.164	0.124	550.634	
05/22/92	5272.9	0.042	221.462	0.065	342.739	
05/26/92	5563.6	0.029	161.344	0.054	300.434	
05/27/92	6428.1	0.042	269.980	0.044	282.836	
05/28/92	5681.2	0.048	272.698	0.060	340.872	
05/29/92	6800.2	0.051	346.810	0.061	414.812	
TOTAL	81291.9	0.042	3391.166	0.056	4550.678	